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Abstract: Real-time computation of optimal control is a challenging problem and, to solve this
difficulty, many frameworks proposed to use learning techniques to learn (possibly sub-optimal)
controllers and enable their usage in an online fashion. Among these techniques, the optimal
motion framework is a simple, yet powerful technique, that obtained success in many complex
real-world applications. The main idea of this approach is to take advantage of dynamic motion
primitives, a widely used tool in robotics to learn trajectories from demonstrations. While
usually these demonstrations come from humans, the optimal motion framework is based on
demonstrations coming from optimal solutions, such as the ones obtained by numeric solvers.
As usual in many learning techniques, a drawback of this approach is that it is hard to estimate
the suboptimality of learned solutions, since finding easily computable and non-trivial upper
bounds to the error between an optimal solution and a learned solution is, in general, unfeasible.
However, we show in this paper that it is possible to estimate this error for a broad class of
problems. Furthermore, we apply this estimation technique to achieve a novel and more efficient
sampling scheme to be used within the optimal motion framework, enabling the usage of this
framework in some scenarios where the computational resources are limited.

Keywords: Real-time optimal control, Learning from control, Autonomous robotic systems

1. INTRODUCTION

Optimal control problems (OCPs) arise in many applica-
tions in robotics, ranging from motion planning (LaValle,
2006) to robot design (Dinev et al., 2022). Generally, ana-
lytical solutions are not known for these problems, which
then must be solved by numerical methods such as direct
methods (Diehl et al., 2006). These methods transcribe the
optimal control problem into a non-linear programming
(NLP) problem that can be usually solved by interior-
point methods even for non-convex problems (Nocedal
et al., 2009). Nevertheless, many problems in robotics
result in an NLP with a large number of variables and
constraints. Hence, finding numerical solutions for those

⋆ This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie
Sk lodowska-Curie grant agreement no. 899987. This work was also
supported by the German Research Foundation (DFG) as part of
Germany’s Excellence Strategy, EXC 2050/1, Project ID 390696704
– Cluster of Excellence “Centre for Tactile Internet with Human-in-
the-Loop” (CeTI) of Technische Universität Dresden. The authors
would also like to thank Luis F.C. Figueredo and Dennis Ossadnik
for the scientific discussions.

problems requires extensive computational power which in
turn makes the usage of OCP solvers intractable for high
dimensional systems (such as robotics systems with many
degrees of freedom), especially in real-time.

Common ways to overcome this restriction and enable the
online usage of optimal controllers are based on exploiting
a priori information of the solution (Harzer et al., 2022)
and/or by providing near-optimal solutions. The latter
approach, for instance, has been explored several times
in model-predictive controllers (MPC), where embedded
applications with low computational power or limited
amount of energy prohibit solving the nonlinear optimiza-
tion problem online (Pohlodek et al., 2022).

In view of this, machine-learning based techniques which
exploit the structure of the problem to yield approximate
optimal controllers are a natural candidate for obtaining
near-optimal solutions in real-time. Indeed, the intersec-
tion between machine learning and optimization problems
has shown promising results ranging from combinatorial
optimization problems (Bengio et al., 2021), MPC con-
trollers (E. et al., 2022; Karg and Lucia, 2020) and solv-



ing Hamilton-Jacobi-Bellman partial differential equation
(Bansal and Tomlin, 2021).

In particular, some supervised learning methods leverage
the numerical solution of optimal control problems to
generate training data for teaching a function approx-
imator to the optimal control solution. This “Learning
from Optimal Control” (LfOC) approach has been suc-
cessfully demonstrated for real-time quadrotor aggressive
maneuvers in Tomic et al. (2014) and throwing/reaching
tasks for robotic manipulators in Haddadin et al. (2013),
where dynamical motion primitives (DMPs), also referred
to as dynamical movement primitives, act as the function
approximator for the optimal control solution.

While the aforementioned LfOC methods are not burden-
some when used online, the generation of training datasets
can be very time-expensive since it requires solving mul-
tiple OCPs. Moreover, missing an important sample in
the training dataset could lead to very costly solutions.
Furthermore, there are no results so far on defining a
metric to measure the performance of learned controllers
compared to the optimal ones. Thus, it is a practical
concern how to define a metric that quantifies the error
between the out-of-sample solutions and the real optimal
solution, and establishes a framework to choose the most
representative solutions for decreasing such an error.

In this work, we develop the basis for such a framework
by leveraging an important information obtained from the
training trajectories: their optimal costs and the sensitivity
of the optimal value function corresponding to the initial
condition of these trajectories. Based on this information,
we devise a way to estimate the suboptimality of out-
of-sample solutions and, moreover, show how to take
advantage of this estimate for efficiently selecting training
data.

2. PRELIMINARIES

2.1 Optimal control problems

In this paper, we consider systems of the form

ẋ(t) = f(x(t)) + g(x(t))u(t) (1)

where x ∈ Rn is the state, u ∈ Rm is the control input, and
f : Rn → Rn and g : Rn → Rn×m are smooth functions
describing the system dynamics.

Motion planning problems linked to (1) are frequently cast
as an optimal control problem of the form

minimize
x∈X ,u∈U

∫ tf

0

L(x(t), u(t)) dt (2a)

subject to

ẋ(t) = f(x(t)) + g(x(t))u(x(t))), t ∈ [0, tf ], (2b)

x(0) = x0, x(tf ) = xf ,

where X is the set of differentiable functions x : [0, tf ] →
Rn, U is the set of continuous functions u : [0, tf ] → Rm

with u(0) = 0, and L : X × U → R is the running cost,
given by

L(x(·), u(·)) = Q(x) + uTRu,

with Q : Rn → R either identically to zero, or a continuous
and positive definite function, and R ∈ Rm×m is a positive-
definite symmetric matrix. Moreover, x0 ∈ Rn is a given

initial state, xf ∈ Rn and tf > 0 are respectively the
terminal state and terminal time.

We assume that (2) has a unique solution for each xf ∈ P,
where P ⊆ Rn is a compact set, and denote the optimal
state trajectory and optimal control respectively by x∗ and
u∗. Many problems in motion planning require solving (or
at least finding an approximate solution) of (2) for multiple
instances. In particular, given a compact set P with the
desired points to be reached, we would need to solve one
instance of (2) for each fixed xf ∈ P.

In many real-world applications, it is often impossible to
find a closed-form solution for (2), and numerical methods
that transform the optimal control problem into a non-
linear programming problem are widely used (Diehl et al.,
2006). Those methods, known as direct methods, are
based on the time discretization of the state and control
variables. Thus, the obtained solution from the NLP is
generally inferior to the solution of the original OCP and a
finer discretization may be needed to improve the solution.
The price of making the discretization finer is increasing
the cost of optimization by requiring more iterations to
be performed within the larger search space (Sahlodin
and Barton, 2017). Consequently, one can not use direct
methods in real-time in general. Indeed, even if P is a finite
set, it can be very time-consuming to produce optimal
solutions that cover the entire set P.

2.2 Review of DMP-based optimal motion framework

Since in general it is not possible to obtain a closed form
solution to (2) and the complexity of numerical methods
limits their usage in real-time, many works in the literature
propose to leverage learning techniques to obtain near-
optimal solutions in real time. In this context, Haddadin
et al. (2013) proposed a learning framework for optimal
control based on dynamical motion primitives (DMPs).
Before reviewing this framework, we will briefly review
the theory of DMPs and the features that make them an
attractive tool within the context of a learning optimal
control framework. For more in-depth details of DMPs,
the reader is referred to Saveriano et al. (2021).

Dynamic movement primitives Following the notation
of Weitschat et al. (2013), a DMP is a dynamical system
defined by the differential equation

−τ2ẍ(t) + κ(xf − x(t))−Dτẋ(t) = F (s(t)) (3)

where τ > 0, κ > 0 and D > 0 are tuning parameters, and
F : R→ Rn and s : R→ R are functions defined as

Fi(s(t)) =

∑N
j=1 ωi,j e

−hi,j(s(t)−ci,j)
2∑N

j=1 e
−hi,j(s(t)−ci,j)2

s(t), (4)

s(t) = e−(α/τ)t, (5)

with α > 0. The forcing function F is a sum of N Gaussian
basis functions with center points ci,j and widths hi,j given
by

ci,j = e(−α j−1
N−1 ),

hi,j =

{
(ci,j+1 − ci,j)

−2, j = 1, . . . , N − 1,

hi,N−1 j = N,

and the weights ωi,j are learned from data by minimizing
the error given by



∑
k

∥−τ2ẍ(tk)+κ(xf−x(tk))−Dτẋ(tk)−F (s(tk))∥, (6)

where x(tk), ẋ(tk) and ẍ(tk) are obtained by sampling
a given trajectory with starting point at x(0) = x0 and
ending point in x(τ) = xf . By the next theorem, solutions
of (3) will always converge to the latter point.

Theorem 1. (Ijspeert et al., 2013, Sec. 2.1.3) Suppose that
κ = D2/4. Then the parameter xf in (3) is a global
asymptotic stable equilibrium point.

After learning the weights ωi,j from a single trajectory
x̃ : R → Rn it is possible to use (3) to generate new
trajectories that are qualitatively similar to x̃, but with
different ending points. In exact terms, to reproduce a
new trajectory with ending point in x′

f , one integrates the
differential equation

−τ2ẍ(t)+κ(x′
f−x(t))−Dτẋ(t) = F (s(t)), x(0) = x0. (7)

It is clear that the only difference between (3) and (7)
are the parameters xf and x′

f . Also note that the same

forcing term F learned in (3) is used without changes and
there is no need to re-learn it. The convergence of the new
trajectory to x′

f is guaranteed by Theorem 1.

For distinguishing between these trajectories more easily,
we will introduce the following notation: the trajectory
obtained by solving (3) with initial condition x(0) =
x0 will be denoted as ΦD(xf |xf ), while the trajectory
obtained by solving (7) as ΦD(x′f |xf ).

Upper bounds to the distance between ΦD(xf |xf )(t) and
ΦD(x′f |xf )(t) at each time t can be quantitatively ex-

pressed as a function of the distance between xf and x′
f .

This follows from the fact that the differential equation
in (3) has a continuous dependence on the parameter
xf (Perko, 2001). These bounds, however, depend on the
computation of (local) Lipschitz constants, whereas in this
work we show that is possible to obtain an easy com-
putable expression for the distance between ΦD(xf |xf )(t)
and ΦD(x′f |xf )(t) in terms of the DMP parameters and

the distance between xf and x′
f :

Proposition 2. The following equality is valid for all
t ∈ [0, tf ]:

∥ΦD(xf | xf )(t)− ΦD(x′
f | xf )(t)∥ =∣∣∣∣e−Dt

2τ

(
−Dt

2τ
− 1

)
+ 1

∣∣∣∣ ∥xf − x′
f∥.

Proof 1. See Appendix.

Learning controllers with optimal motion primitives The
DMP-based framework relies on the assumption that opti-
mal trajectories that have close terminal end-points have
qualitatively similar shapes. While this assumption seems
very restrictive, it has been verified in practice for reach-
ing/tracking motions with minimal energy in elastic robots
in Weitschat et al. (2013) and time-optimal maneuvers for
quadrotors in Tomic et al. (2014).

Under this assumption, the optimal trajectories obtained
by numerically solving (2) will be used to create DMPs

with different xf ’s at each point of a finite grid P̂ contained

in P. If a terminal state is outside P̂, it should be inside
a hypercube with vertices in P̂, and a trajectory can

be computed almost instantaneously by “blending” the
weights of the DMPs in the vertices. For instance, Tomic
et al. (2014) blends the weights by bilinear interpolation
while Haddadin et al. (2013) uses a weighted interpolation
based on the costs of the trajectories. The new DMP is
then used to instantaneously generate a new trajectory to
the unsampled terminal state.

Assuming that there exists a well-defined function

u := u(x, ẋ, ẍ, . . . , x(m)), (8)

where x(m) is the m-th derivative of x with respect to
time, the control input u associated with a trajectory x
can be directly recovered from the DMP trajectories. In
particular, if g in (1) is invertible, then u can be recovered
with

u(t) = g−1(x(t))(ẋ(t)− f(x(t)))
While in general the new solutions will not be optimal,
they will be close to it and the stability of the terminal
state is guaranteed by Theorem 1.

Finally, it is interesting to highlight that many extensions
of the DMP framework can be inherited by this optimal
motion framework. For instance, Tomic et al. (2014) used
the possibility of combining multiple DMPs to join a
sequence of maneuvers for a quadrotor.

3. ESTIMATION OF OPTIMAL VALUE AND
SAMPLING ALGORITHM

The DMP-based approach for learning optimal control
requires storing KN weights in memory, where N is the
number of basis functions used in (3) and K is the number
of sample trajectories obtained by solving (2) for different
xf ∈ P. While Weitschat et al. (2013) proposed a tech-
nique for finding a minimal number N of basis functions,
the product KN can still be large depending on the re-
quirements of the application. Moreover, some complex
trajectories may require a high number K to obtain good
generalization properties, such as time-optimal perching
maneuvers in quadrotors (Tomic et al., 2014).

To reduce K, one may consider to avoid sampling tra-
jectories whenever the cost of the out-of-sample DMP is
good enough for a given application. For that, one needs to
compute (or at least estimate) how suboptimal a learned
trajectory is. To achieve this cost-aware sampling strategy,
we propose to leverage the sensitivity information in the
learned trajectories, i.e. the trajectories that are obtained
by solving (2).

In the next subsection we show how this can be done
and how it can be used to estimate the value function
in a neighborhood of the ending points of the learned
trajectories. We also show how to apply this approxi-
mation to efficiently create a sampling grid for learning
optimal control when there are restrictions on the number
of samples.

3.1 First-order approximation to the value function

In order to estimate the suboptimality of an out-of-sample
trajectory ΦD(x′f |xf ), we will need to estimate the cost of
the true optimal trajectory. To this end, we will get the
cost of optimal trajectories by using the notion of the value
function, whose definition we precisely state next.



Following p. 159 of Liberzon (2011), the value function
V : Rn × R→ R for (2) is defined as

V (x, t) = inf
u∈U

{∫ tf

t

L(x(s), u(s)) ds

}
. (9)

In other words, assuming the existence of an optimal
control, V (x, t) is the cost of the optimal trajectory that
starts from the initial state x at the time t.

Assuming that V is differentiable on P, it is possible to
use Bellman’s optimality principle to show that V is the
solution of a partial differential equation (known as the
Hamilton-Jacobi-Bellman equation) and that it is possible
to recover the solution of (2) from this V . This is precisely
stated for systems of the form (1) as follows. Suppose that
(1) is Lipschitz continuous and stabilizable on Ω ⊆ Rn, and
that f(0) = 0. Assume that there exists a differentiable
function V : Rn×R→ R satisfying the partial differential
equation given by 1

∂V

∂t
(x, t)=−∂V

∂x
(x, t)f(x)+

1

4

∥∥∥∥∥R− 1
2
∂V

∂x

T

(x, t)g(x)

∥∥∥∥∥
2

. (10)

Then the optimal control solving (2) is given by

u∗(x, t) = −1

2
R−1gT(x)

∂V

∂x
(x, t). (11)

Given an optimal trajectory u∗ obtained by numerically
solving (2) and assuming (10) holds, it is possible to
recover ∂V

∂x along this optimal trajectory:

∂V

∂x
(x∗(t), t) = −2g−T(x∗(t))Ru∗(x∗(t), t). (12)

In particular, ∂V
∂x (x

∗(0), 0) can be interpreted as the sen-
sitivity of the optimal cost V with respect to changes in
the initial condition x∗(0)—for more details, the reader is
referred to (Kamien and Schwartz, 2012). In the DMP-
based framework, however, the initial state is fixed while
the terminal state xf ∈ P is changed. To enable the use of
(12) in our framework, we will use Lemma 3 below.

Lemma 3. The optimal cost of the OCP

minimize
z(·),v(·)

∫ tf

0

L(z(t), v(t)) dt (13a)

subject to

ż(t) = −f(z(t))− g(z(t))v(t), t ∈ [0, tf ], (13b)

z(0) = xf , z(tf ) = x0

is equal to the optimal cost of (2), and the optimal
functions are related by

z∗(t) = x∗(tf − t), v∗(t) = u∗(tf − t). (14)

Proof 2. Define the functions z and v as

z(t) = x(tf − t), v(t) = u(tf − t).

By definition, z(0) = xf and z(tf ) = x0 if and only if
x(0) = x0 and x(tf ) = xf .

Moreover, since ż(t) = −ẋ(tf − t), we have by (1) that

ż(t) = −f(x(tf − t))− g(x(tf − t))u(tf − t)

= −f(z(t))− g(z(t))v(t).

1 Similar to Isidori and Astolfi (1992) and van der Schaft (1992),
we have assumed the existence of differentiable solutions to (10). We
refer the interested readers to (Cheng et al., 2007, Remark 1) for a
discussion about the differentiability of the function V (x, t).

Finally, performing integration by substitution we can
show that the cost of the trajectories is the same:∫ tf

0

L(x(t), u(t)) dt =

∫ 0

tf

−L(x(tf − t), u(tf − t)) dt

=

∫ tf

0

L(z(t), v(t)) dt.

Thus, solutions of (2b) can be mapped to solutions of
(13b) with same cost, and by similar arguments, the
converse also holds. In particular, the optimal cost of the
two OCP problems is the same. 2

Lemma 3 allows us to convert a (parametric) optimal
control problem in which the initial condition is fixed and
the terminal condition is varying in P to a problem in
which the initial condition changes in P while the terminal
condition is fixed. How this helps us to achieve first-order
estimates for the optimal value function is explained next.

First, we solve 2 the optimal control problem (13), ob-
taining a backward-time trajectory z∗ and its associated
control input v∗. In particular, we obtain the value of v∗

which starts at time 0 in xf , which will be used in the final
step.

Second, we define x∗ using (14) and encode the forward-
time trajectory solution in the DMP so we can generate a
trajectory ΦD(x′

f | xf ) to a new goal x′
f ∈ P.

Finally, to estimate the suboptimality of the new out-
of-sample trajectory, we will need to consider the value
function associated with the backward optimal control
problem (13), which is defined as

Ṽ (x, t) := inf
u∈U

{∫ tf

t

L(x(tf − s), u(tf − s)) ds

}
,

and note that Ṽ (x′
f , 0) is, by Lemma 3, the cost of the

optimal trajectory with same endpoints as ΦD(x′
f | xf ).

To compute Ṽ (x′
f , 0), note that the differentiability of V

(with respect to x) implies (see Corollary 1.24 of Güler
(2010))

Ṽ (x′
f , 0)= Ṽ (xf , 0) +

∂Ṽ

∂x
(xf , 0)(x

′
f − xf )+o(∥x′

f − xf∥),
(15)

where o(∥x′
f − xf∥) is an (unknown) function that con-

verges to 0 as ∥x′
f − xf∥ tends to 0.

Moreover, the term Ṽ (xf , 0) of the right-hand side of
(15) is already computed by the first step, and the

term ∂Ṽ
∂x (xf , 0) can be computed applying (12) for the

backward-time system, that is 3

∂Ṽ

∂x
(xf , 0) = 2g−T(xf )Rv∗(xf , 0), (16)

where v∗(xf , 0) was also computed in the first step. Fig-
ure 1 summarizes the above steps.

2 Please note that the we have assumed that the optimal solution
is obtained numerically. However, and without losing generality, we
only need to assume that an optimal solution is given to us.
3 Note that here we use g instead of -g because we are applying (12)
to the backward-time system.



Revert solution using (14)
and encode in DMP

(16)

Solve backward OCP (13)

Generalize

Estimate optimal cost
using (15)

⮕

⮕
⮕

① ②

③

④

Fig. 1. Diagram illustrating the steps for computing an
estimate for the cost of an optimal trajectory that
corresponds to an out-of sample trajectory with same
endpoints.

In conclusion, (15) enables us to estimate (for sufficiently
small values of ∥x′

f −xf∥) the suboptimality of ΦD(x′f |xf )
by computing∫ tf

0

L(ΦD(x′
f | xf )(s), ûD(s)) ds

−

[
Ṽ (xf , 0) +

∂Ṽ

∂x
(xf , 0)(x

′
f − xf )

]
,

(17)

where ûD is the input associated to ΦD(x′
f | xf ) and is

computed by (8).

3.2 Sampling algorithm description

In this section, we explain how the approximation obtained
in (17) can be used to design a sampling algorithm for
applications in which memory storage restrictions possibly
prohibit the usage of a fine grid for P.

The details of the sampling scheme are presented in the
pseudo-code of Algorithm 1. First, a terminal point xf ∈ P
is chosen and a direction v ∈ Rn is given. Then, the
backward optimal control with z(0) = xf is solved and
encoded in ΦD(xf | xf ).

After that, we select another point in P by adding a user-
defined ∆x ∈ Rn to the starting point. If this new point
x′
f is outside P, it means that we do not need to continue

any further in this direction and the algorithm stops.

Otherwise, we use the procedure outlined in the last sub-
section to estimate the suboptimality of the generalization
ΦD(x′f |xf ) using (17). If the difference between the cost of

ΦD(x′f |xf ) and the estimated cost of the optimal trajec-

tory ending at x′
f is lower than a user-defined threshold,

then it means that the generalization ΦD(x′f |xf ) is good
enough for the application and there is no need to solve
a new optimal control problem for encoding it in a new
DMP.

It is important to remark that since (15) is only a first-
order approximation, the estimate can become useless if

x′
f and xf are distant. Because of this, the algorithm

should re-sample in the case the number of steps given
without re-sampling surpass tsteps, a user-defined limit.
The entire procedure repeats until a number tsamples of
samples, defined by the user to reflect the limitations of
his or her application, are reached.

By repeating the sampling algorithm for each direction
orthogonal to v the algorithm can be used to create a n-
dimensional grid P̂, whose points are made by the Carte-
sian product of the samples generated by each direction
orthogonal to v.

Finally, a near optimal trajectory can be generated online
for each point in P by using a bilinear or a cost-weighted
interpolation in P̂ (Tomic et al., 2014; Haddadin et al.,
2013). In either case, it is possible to use (17) again to
estimate the suboptimality of each point x′

f in the entire

region P by using (17) with the nearest points xf of x′
f in

P̂.
Remark 4. Though the algorithm presented here was ex-
plained within the framework of learning optimal con-
trol with DMPs, it could be easily generalized for other
frameworks that use an alternative primitive for encoding
optimal solutions, for instance, Gaussian processes (Clever
et al., 2017).

Remark 5. Note that (12) assumes the invertibility of g.
Nevertheless, the sampling scheme presented here can also
be applied in cases where it is possible to partially recover
some of the derivatives of V by (11), even when g is not
invertible. Such is the case of mechanical systems, which
can be represented by (1) and satisfy

∂V

∂q̇
= −2M(q)Rτ∗,

where q is the vector of generalized coordinates, M is the
mass matrix and τ is the optimal input torque.

4. NUMERICAL SIMULATION

In this numerical simulation, we illustrate the application
of the proposed method described in Algorithm 1 for the
optimal control problem (2) with L(x(·), u(·)) = uTu and
considering a non-linear system in the form (1), given by[

ẋ1(t)
ẋ2(t)

]
=

[
−x2

1(t)
−2x2(t)

]
+

[
1 x1(t)
0 1

] [
u1(t)
u2(t)

]
. (18)

Moreover, the boundary conditions are x0 = (5, 5) for the
initial state x(0), and the terminal state x(8) will be equal
to xf , which will be a varying parameter within

P = {(x1, 5) : x1 ∈ [1, 9]}.
Remark 6. We only considered variations in the x1 direc-
tion since similar results would be obtained by considering
variations in the x2 direction.

Algorithm 1 was executed by taking x0 as the first sam-
pling point and with direction v = (1, 0). The threshold
for the cost difference (Jthreshold) was chosen as 10, and
the maximum number of allowed samples (tsamples) in this
direction was chosen as 15. The size of the step (∆x) used
was 0.2, and the maximum number of steps (tsteps) allowed
without taking any sample was 5.



Algorithm 1 Sampling method for a specific direction v

Input: v: initial direction to start sampling
1: procedure sample(v)
2: Jthreshold ← threshold of allowed deviation from estimated optimal cost
3: tsamples ← maximum number of allowed samples in P̂
4: ∆x← size of step in direction v
5: tsteps ← maximum number of steps
6: xf ← a given point in P
7: P̂← ∅
8: while |P̂| ≤ tsamples do
9: xf ← x′

f

10: (z∗, v∗)← solution of (13) with z(0) = xf

11: x∗(t)← z∗(tf − t)
12: Encode optimal solution x∗ in ΦD(xf |xf )
13: Include xf in P̂ and store weights ωi,j of ΦD(xf |xf ) in memory

14: Vx ← gradient of Ṽ with respect to x computed by (16)
15: Js ← cost of optimal solution v∗

16: nstep ← 1
17: do
18: x′

f ← x′
f +∆x · v

19: V̂ ← Js + Vx · x′
f

20: JDMP ← cost of ΦD(x′
f | xf )

21: nstep ← nstep + 1

22: while JDMP − V̂ < Jthreshold and nstep < tsteps and x′
f ∈ P

23: end while
24: end procedure

(a)

(b)

(c)

Fig. 2. (a) Application of sampling algorithm to example
system (18). The dashed vertical lines indicate the
terminal points wherein a new DMP should be used,
while the points between the lines are out-of-sample
learned trajectories. (b) Error between the estimated
optimal cost and the real value of the optimal cost.
(c) Difference between the cost of the DMP trajectory
and the real optimal cost.

Figure 2 shows the efficacy of the approximation method
for the optimal value function using (15). The maximum
absolute error between the optimal cost (computed using
a numerical optimal control solver only for the purpose
of benchmark) and the cost estimated by (15) is given by
1.07.

To clarify the difference between the proposed sampling
strategy and the naive uniform strategy, Figure 3 shows
the respective grids that are obtained by each strategy.
It can be seen that the resulting grid P̂ is non-uniform,
reflecting the high sensitivity of the cost when xf is within
the subset {(x1, 5) : x1 ∈ [7, 8]} ⊂ P. On the other hand,
a uniform grid with length given by the minimal distance
(of 0.2) between the sampling points of the uniform grid

would require at least 39 samples to cover P̂, more than
the double of the samples obtained using the proposed
sampling strategy.

5. CONCLUSION

In this paper, we augmented a DMP-based framework for
learning optimal control with a method to estimate the
optimal value near the learned optimal trajectories, and
used it to derive a sampling scheme that could be used for
reducing storage requirements in applications where this
could be an issue, such as in embedded systems.

The results in this paper could be extended in many
directions, such as how to generalize this framework for
dealing with optimal control problems with other varying
parameters beside the terminal state. This would be inter-
esting, for instance, for selecting the optimal configuration
of a reconfigurable robot to execute a given task or in
optimal braking problems, such as the one presented in
(Hamad et al., 2023).
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control for viscoelastic robots and its generalization in
real-time. In M. Inaba and P. Corke (eds.), Robotics
Research - The 16th International Symposium ISRR,
16-19 December 2013, Singapore, volume 114 of Springer
Tracts in Advanced Robotics, 131–148. Springer.

Hamad, M., Gutierrez-Moreno, J., Kussaba, H.T.M.,
Mansfeld, N., Abdolshah, S., Swikir, A., and Haddadin,
S. (2023). Fast braking maneuvers for real-time robot
control with stopping trajectory prediction. In 22nd
World Congress of the International Federation of Au-
tomatic Control.

Harzer, J., Schutter, J.D., and Diehl, M. (2022). Efficient
numerical optimal control for highly oscillatory systems.
IEEE Control Systems Letters, 6, 2719–2724.

Ijspeert, A.J., Nakanishi, J., Hoffmann, H., Pastor, P.,
and Schaal, S. (2013). Dynamical movement primitives:
learning attractor models for motor behaviors. Neural

Computation, 25(2), 328–373.
Isidori, A. and Astolfi, A. (1992). Disturbance attenuation

and H∞-control via measurement feedback in nonlinear
systems. IEEE Transactions on Automatic Control,
37(9), 1283–1293.

Kamien, M.I. and Schwartz, N.L. (2012). Dynamic opti-
mization: the calculus of variations and optimal control
in economics and management. Dover, Mineola, New
York.

Karg, B. and Lucia, S. (2020). Efficient representation and
approximation of model predictive control laws via deep
learning. IEEE Transactions on Cybernetics, 50(9),
3866–3878.

LaValle, S.M. (2006). Planning algorithms. Cambridge
University Press.

Liberzon, D. (2011). Calculus of variations and optimal
control theory: a concise introduction. Princeton uni-
versity press.
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APPENDIX

Proof of Proposition 2

Let x(t) := ΦD(xf | xf )(t) and x′(t) := ΦD(x′
f | xf )(t).

Then the following equations are valid:

−τ2ẍ(t) + κ(xf − x(t))−Dτẋ(t) = F (s(t)),

−τ2ẍ′(t) + κ(x′
f − x′(t))−Dτẋ′(t) = F (s(t)).

Defining x̂(t) = x(t) − x′(t) and subtracting the second
equation from the first one yields

−τ2 ¨̂x(t)− κx̂(t)−Dτ ˙̂x(t) = −κ(xf − x′
f ),

a second-order linear equation with a constant forcing term
which solution (when κ = D2/4) is given by

x̂(t) =

(
e−

Dt
2τ

(
−Dt

2τ
− 1

)
+ 1

)
(xf − x′

f ).


