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Existence of continuous or constant Finsler’s
variables for parameter dependent systems

J. Y. Ishihara, H. T. M. Kussaba, R. A. Borges

Abstract—Finsler’s lemma is a classic mathematical result with
applications in control and optimization. When the lemma is
applied to parameter dependent LMIs, as such those that arise
from problems of robust stability, the extra variables introduced
by this lemma also become dependent on this parameter. This
technical note presents some sufficient conditions which ensure,
without losing generality, that these extra variables can assume a
simple functional dependence on the parameters as continuity or
even independence. The results allow avoiding an unnecessary use
of a more functionally complicated parameter dependent variable
that increases the search computational burden without reducing
the conservatism of the solution.

Index Terms—Finsler’s lemma, Linear matrix inequality.

I. INTRODUCTION

Recently, the classical Finsler’s lemma was reinterpreted
to give novel LMI characterizations to stability and control
problems [1]. One important fact that motivates the search
for LMI formulations is that nowadays the LMI theory is
equipped with a large number of techniques which allows one
to extend LMI analysis characterization to control or filtering
design conditions in a quite systematic way (see, e.g. [2]).
The LMI theory has been successfully applied to state a large
number of problems arising from system and control theory
as standard convex optimization problems [3]–[5]. Once a
problem is stated as an LMI, it can be handled numerically in
polynomial time by several software such as the LMI Control
Toolbox [6] and SeDuMi [7], and can even, in some cases, be
solved analytically [3].

Another advantage of the application of the Finsler’s lemma
is that it enables one to deal with robustness issues using
parameter dependent (PD) formalism [1]. It was observed that
certain PD quadratic or nonlinear matricial inequalities can
be recast as PD-LMIs through the Finsler’s lemma. With this,
several robust control problems turned out to be analyzable
in PD-LMI context without loss of generality. Prior to the
application of Finsler’s lemma, in the literature there were non-
conservative but very computationally expensive nonlinear
inequality solutions or less expensive but approximated and
conservative LMI solutions.

However, one should remember that although a PD-LMI for-
mulation is less computationally demanding than a nonlinear
inequality formulation, a PD-LMI is still very computationally
demanding. It is known that a generic PD-LMI is an NP-
hard problem [8]. In face of this, there have been several
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approaches in the linear matrix inequality literature to relax
PD-LMIs problems. For instance, one can consider the worst
case scenario for the effect of the parameter over a property
of interest, such as stability or H∞ gain. Although this
approach is effective, it leads to very conservative criteria.
A less conservative but naive method to solve a PD-LMI
would be to approximate the parameter space S by a finite
set of points—this would relax the PD-LMI into a finite
number of LMIs. However, this method usually requires a
great number of points for its results to become satisfactory,
which generates a heavy computational load. Moreover, if
some points are excluded, it is possible that the result turns out
to be excessively optimist [9]. Another relaxation procedure
is to use a polynomial relaxation, which consists of restricting
the variables of the PD-LMI to polynomial functions of
a fixed degree g and using the matrix coefficients of the
polynomial stemmed from this procedure to generate new
LMIs independent of the parameter. With the increase of the
degree g of the polynomial, less conservative sets of conditions
are obtained. From degrees greater than some value, the set
of conditions imply the original PD-LMI [10].

Along with the technique of polynomial relaxation, in some
PD-LMI solvable problems, one may also use the Finsler’s
lemma to relax conservativeness in further analysis. For in-
stance, in the context of robust filter or control design, consider
an uncertain continuous-time linear system given by

ẋ(t) = A(s)x(t) (1)

where s is a vector of unknown parameters belonging to a
known set S. It is possible to prove (see [1]) that a sufficient
condition to robust stability is related to the existence of
a positive definite matrix valued function P(s) and a scalar
function µ(s) such that for all s ∈ S,

[

−µ(s)AT (s)A(s) µ(s)AT (s)+P(s)
µ(s)A(s)+P(s) −µ(s)I

]

≺ 0. (2)

Differently from the classical approach, in (2), the matrix
variable P(s) does not multiply the system matrix A(s). This
separation allows one to deal with stability analysis of closed
loop systems to design stabilizing controllers or filters in a
much simpler procedure than the traditional. Also, it may
lead to less conservative results [11], [12]. As a consequence,
Finsler’s lemma has been notably employed in the literature
in several contexts [13]–[19]. For examples of several control
problems that can be dealt with the Finsler’s lemma (also
known as S-lemma) one can see [12]. The drawback of this
approach is that it increases the search space. For instance,
in contrast to the traditional stability analysis with a unique
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variable P(s), (2) is a PD-LMI in P(s) and µ(s), that is, now
the introduced extra function µ(s) is also a variable that needs
to be found.

Relaxation is a good resort when the solution space is little
known. Another approach considered in the literature is to find
some properties on the parameter set S and on the matrices of
the system in order to reduce the search space of the solutions
[10], [20]. In fact, if S is a compact set and the matrices of
the PD-LMI depend continuously on the parameter, in [10] it
is proved that if the PD-LMI has a solution, then one can
restrict the search for a solution in the set of polynomial
functions. In the particular case that S is a unit simplex, there
will also be without loss of generality, a solution that is a
homogeneous polynomial [21]. These results are important
since, with the knowledge that a continuous function can
be approximated by a polynomial, they form the theoretical
justification for the polynomial relaxation approach (where
at least a continuous solution is supposed to exist). If the
parameter space is instead all the space and the matrices of
the PD-LMI depends polynomially on the parameter, then [20]
shows that one can restrict the search space and look for a
rational solution.

Besides the polynomial or rational structures for the slack
variable introduced by the Finsler’s lemma, we show in
this paper that there are some cases in which a parameter
independent slack variable is as good as a parameter dependent
one. In other words, there is no gain to impose a complicated
functional structure to the extra variable. In fact, the objective
of this paper is to investigate some conditions in which it
is possible, without loss of generality, to impose solutions
of simpler functional structures, such as continuous, rational
or constant solutions for the slack variables introduced by
Finsler’s lemma. In the LMI context, this allows reducing
computational burden without increasing the conservatism of
the solution. This work is an extension of our previous analysis
on uniform versions of Finsler’s lemma [22]. Here, some
new results are presented and some results from [22] were
improved: the converse of Lemma 3 from [22] has been proved
in Lemma 4 of this paper. Both Lemma 3 and Theorem 2
from [22] were stated for matrix-valued functions of a compact
subset of R. In this paper, these results are extended for matrix-
valued functions of a compact subset of R

d . The hypothesis
of Theorem 1 and Corollary 1 from [22] has been weakened
in Theorem 4 of this work.

Notation: In the sequel the following notation will be used:
R is the set of real numbers, Rm×n the set of real matrices
of order m× n. Sn, Sn

>0 and S
n
≥0 are, respectively, the set of

symmetric, positive definite and positive-semidefinite matrices
of order n×n. For a matrix A, A ≺ 0 indicates that −A ∈ S

n
>0,

AT its transpose; Im(A) and Ker(A) are respectively the image
and the kernel of A; A⊥ is a matrix whose columns span a
basis for Ker(A) and A1/2 denotes the principal square root of
a positive-semidefinite matrix A.

II. THE FINSLER’S LEMMA

The importance of the Finsler’s lemma can be highlighted
by the fact that it is equivalent to other important results

in control and optimization literature such as Yakubovich’s
S-lemma [23]. In fact, Finsler’s lemma have been proved
several times [1], [24]–[29]. Nowadays the Finsler’s lemma
is commonly stated as below:

Lemma 1. [1] Let Q ∈ S
n and B ∈ R

m×n, with rank(B) < n.
Then the following statements are equivalent:

1) xT Qx < 0 for all x ∈ R
n such that x 6= 0 and Bx = 0.

2) There exists µ ∈ R such that Q−µBT B ≺ 0.
3) There exists X ∈ R

n×m such that Q+XB+BT XT ≺ 0.
4)

(

B⊥
)T

QB⊥ ≺ 0.

The equivalence between 1) and 2) is attributed to Paul
Finsler [30], where he considered a more general case involv-
ing an indefinite matrix instead of the positive semi-definite
matrix BT B. It is also interesting to remark that the equivalence
between 3) and 4) can be seen as a particular case of the
Projection Lemma (also known as Elimination Lemma), which
is also widely used in control [3], [31].

The first contribution of this paper is the observation that in
statements 2) and 3) of Lemma 1, the hypothesis rank(B)< n
is not necessary.

Lemma 2. Let Q ∈ S
n and B ∈ R

m×n, with rank(B) = n. Then
there exists µ ∈ R such that Q− µBT B ≺ 0. One such µ is
given by

µ = 1+
λmax(Q)+ |λmax(Q)|

λmin(BT B)
.

Moreover, there exists X ∈ R
n×m such that Q + XB +

BT XT ≺ 0. One such X is given by

X =−
1
2

[

1+
λmax(Q)+ |λmax(Q)|

λmin(BT B)

]

BT .

Proof: See Lemma 7 in Appendix and consider M = Q
and N = BT B.

With Lemma 2, one can generalize the Finsler’s lemma by
eliminating the hypothesis rank(B)< n. When rank(B)= n, the
empty sentences 1) and 4) are reinterpreted as being trivially
satisfied. This general Finsler’s Lemma, extended to parameter
dependent systems, is stated in the next section.

III. FINSLER’S LEMMAS FOR PARAMETER DEPENDENT

SYSTEMS

When dealing with uncertain systems, the matrices Q or
B can become dependent on parameters [11]. A pointwise
extension of Finsler’s lemma is easily obtained as stated in
the following.

Lemma 3. Let S ⊆ R
d , Q : S → S

n and B : S → R
m×n. Then

the following statements are equivalent:
(F1) For each s ∈ S, one has xT Q(s)x < 0 for all x ∈R

n such
that x 6= 0 and B(s)x = 0.

(F2) (∀s ∈ S)(∃µ (s) ∈ R) : Q(s)−µ (s)BT (s)B(s)≺ 0.
(F3) For each s ∈ S, there exists X(s) ∈ R

n×m such that

Q(s)+X(s)B(s)+BT (s)XT (s)≺ 0.

(F4) For each s ∈ S, one has that
(

B⊥(s)
)T

Q(s)B⊥(s)≺ 0.

Proof: Follows directly extending pointwisely Lemma 1
and Lemma 2.
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The inequalities in sentences (F2) and (F3) are known as
parameter dependent LMIs (PD-LMIs), and must be satisfied
for all parameters s ∈ S. Since the problem of finding a
solution to a PD-LMI may be NP-hard [10], it is interesting
to reduce the search space by seeking solutions in classes of
functions µ (s) or X (s) with some functional structure like
continuity, rational or polynomial dependency or even inde-
pendent constant solution. Since we can obtain the solution
X (s) =− 1

2 µ (s)BT (s) for (F3) once we have a solution µ (s)
for (F2), in this paper we will be mainly interested in the
following situations for (F2):

(F2a) There exists a function µ : S → R such that Q(s)−
µ(s)BT (s)B(s)≺ 0 for all s ∈ S.

(F2b) There exists a continuous function µ : S → R such that
Q(s)−µ(s)BT (s)B(s)≺ 0 for all s ∈ S.

(F2c) There exists a rational function µ : S → R without
singularities on S such that Q(s)− µ(s)BT (s)B(s) ≺ 0
for all s ∈ S.

(F2d) There exists a polynomial function µ : S → R such that
Q(s)−µ(s)BT (s)B(s)≺ 0 for all s ∈ S.

(F2e) There exists a constant µ̄ ∈ R such that Q(s) −
µ̄BT (s)B(s)≺ 0 for all s ∈ S.

It is obvious that (F2e) ⇒ (F2d) ⇒ (F2c) ⇒ (F2b) ⇒ (F2a),
however, as shown in the following counterexample, reverse
implications are not true in general and additional hypothesis
on the set S and the functions Q(s) and B(s) are necessary to
assure that existence of pointwise solutions µ (s) guarantees
the existence of a solution with a simple functional dependence
on s.

Example 1. For S = (0,+∞) ⊂ R, let Q : S → R
2×2 and B :

S → R
1×2 be given by

Q(s) =

[

−1 0
0 q(s)

]

, BT (s) =

[

0
s

]

.

One has that any solution µ (s) for Q(s)−µ (s)BT (s)B(s)≺ 0
must satisfy

µ (s)>
q(s)
s2 , s ∈ (0,+∞). (3)

Thus, independently if the function q(s) is discontinuous or
not, to guarantee that (F2a) will be satisfied one can take
µ (s) = q(s)

s2 + ε with ε > 0.
For q(s) = s, one function satisfying (F2b) and (F2c) is

µ (s) = 1
s + ε with ε > 0. It is easy to see that there is no

constant solution µ (s) = µ̄ nor a polynomial solution µ (s) =
ansn + ...+ a1s+ a0 since in (3) the function q(s)

s2 = 1
s grows

without bound as s goes to 0.
Similarly, for q(s) = es, one function satisfying (F2b) is

µ (s) = es

s2 + ε with ε > 0. And it can be shown that there
is no constant, polynomial nor rational solution µ (s), since
otherwise from (3) there would exist a rational function
growing faster than the exponential as s → ∞.

Further, take a function q(s) such that, for some point 0 <

s̄<+∞, q(s)
s2 goes to +∞ for s ↓ s̄ and goes to any value q̄<+∞

for s ↑ s̄. In this case, it is impossible to find a continuous µ (s)
satisfying the inequality (3), that is, although (F2a) is satisfied,
(F2b) is not.

The main objective of this paper is to investigate under
which conditions there are equivalences among the statements
(F2a),. . .,(F2e) since this means that one can reduce the search
space to subspaces of functions µ(s) with a simpler structure
without loss of generality. Some of these equivalences have
already been shown in the literature.

Theorem 1. [20] If the functions Q(s) and B(s) are poly-
nomial (matrices) over S = R

d , then (F2a) is equivalent to
(F2d).

Proof: Follows directly by choosing F = −Q and G =
−BT B in Proposition 3.2 from [20]1.

Theorem 2. [10] Let Q : S → S
n and B : S → R

m×n be con-
tinuous matrix valued functions on a compact S ⊂ R

d . Then
(F2a) is equivalent to (F2d).

Proof: Follows directly from Theorem 1 of [10].
In the next section, we investigate other conditions for

some equivalences among the statements (F2a),. . .,(F2e). In
particular, one of the main goals of this paper is to investigate
when the PD-LMI in (F2) is also valid uniformly in µ , that
is, when (F2a) is equivalent to (F2e).

A. Results on the scalar-valued function µ (s)

The first result of this paper shows that if the parameter set S
is compact, then there is no gain in searching for a complicated
continuous solution µ(s) since one can reduce the search to
constant solutions.

Theorem 3. Let Q : S → S
n and B : S → R

m×n be matrix
valued functions on a compact S ⊂ R

d . Then the sentences
from (F2b) to (F2e) are all equivalent. If further, Q and B
are continuous then the sentences from (F2a) to (F2e) are all
equivalent.

Proof: The proof for (F2e) ⇒ (F2d) ⇒ (F2c) ⇒ (F2b) is
immediate. Suppose now that (F2b) is valid. By Weierstrass’
theorem [32, p.90], the function µ (s) has a maximum µmax in
S. Thus

0 ≻ Q(s)−µ(s)BT (s)B(s)� Q(s)−µmaxBT (s)B(s)

and (F2e) is satisfied with µ̄ = µmax. If Q and B are contin-
uous, then (F2a) is equivalent to (F2d) by Theorem 2. Since
all sentences from (F2b) to (F2e) are equivalent, the result
follows.

Note that for PD-LMIs with one variable µ (s), Theorem 3
extends the consecrated result of [10]. This might be useful in
the context of polynomial relaxation procedures for PD-LMIs
[10], [21], wherein it is assumed that µ (s) is a polynomial
function. With Theorem 3, one can reduce the search space
from the set of polynomial functions to the set of real numbers.

Another fundamental lemma which gives a general con-
dition to guarantee the existence of one µ for all s ∈ S is
presented below.

1The original Proposition 3.2 establishes the existence of µ rational without
singularities. However, from its proof, one can conclude that µ can be chosen
polynomial. We thank the anonymous reviewer that pointed out the possibility
of this extension and to prof. Jaka Cimprič for ratifying this fact.
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Lemma 4. Let Q : S → S
n and B : S → R

m×n be functions on
S ⊂ R

d such that

sup
s∈S

inf
{

µ ∈ R | Q(s)−µBT (s)B(s)≺ 0
}

< ∞. (4)

Then the statements from (F2a) to (F2e) are all equivalent.
Conversely, if (F2e) holds, then (F2a) and (4) hold.

Proof: The proof for (F2e) ⇒ (F2d) ⇒ (F2c) ⇒ (F2b) ⇒
(F2a) is immediate. We now prove that (F2a) implies (F2e).
For each s ∈ S, define

M (s) =
{

µ ∈ R | Q(s)−µBT (s)B(s)≺ 0
}

.

For each s, one has that if µ∗ ∈M (s), then µ∗+α ∈ M (s)
for all α ≥ 0, since

0 ≻ Q(s)−µ∗BT (s)B(s)� Q(s)− (µ∗+α)BT (s)B(s) .

By (F2a), one has that M (s) 6= /0 for any s ∈ S. Therefore,
there always exists a µ∗ (s) ∈ M (s) such that [µ∗ (s) ,+∞)⊆
M (s). By (4), there exists m ∈ R such that

inf
{

µ ∈ R | Q(s)−µBT (s)B(s)≺ 0
}

< m, ∀s ∈ S.

Consequently, m∈M (s) for all s∈ S and µ̄ =m is such that
(F2e) holds. Conversely, suppose that (F2e) holds. It is clear
that (F2a) holds and M (s) 6= /0 for all s ∈ S since µ̄ ∈ M (s).
It follows that, infM (s)≤ µ̄ , ∀s ∈ S and sups∈S infM (s)≤
µ̄ < ∞.

Remark 1. If one adopts the convention that inf /0 =+∞ then
Lemma 4 can be restated as: (F2e) is equivalent to (4). The
above presentation of the lemma was preferred in order to
distinguish the situations where does not exist µ (s) from those
where the function µ (s) goes to infinity.

Note that Lemma 4 is very general and does not require
any special structure on the functions Q(s) and B(s) nor on
the set S. One immediate use of Lemma 4 is a derivation of a
Finsler’s lemma version for switching systems. This is a case
where (4) can be easily checked as discussed in the following.

Corollary 1. Consider matrix valued functions Q : S→ S
n and

B : S →R
m×n assuming a finite number of values given by the

set {(Q1,B1) , ...,(QN ,BN)}. Then the statements from (F2a)
to (F2e) and the following statements are equivalent:

(F2f) There exists a constant µ̄ ∈R such that Qi− µ̄BT
i Bi ≺ 0

for every i ∈ {1, ...,N}.
(F2g) For every i∈ {1, ...,N} ,∃µi ∈R such that Qi−µiBT

i Bi ≺
0.

Furthermore, if Q(s) and B(s) are piecewise constant func-
tions on S, then (F2a)− (F2g) are also equivalent to

(F2h) There exists a piecewise constant function µ : S → R

such that Q(s)−µ (s)BT (s)B(s)≺ 0 for all s ∈ S.

Proof: Consider (F2a) valid. It is
clear that for every i ∈ {1, ...,N}, Mi :=
{

µ ∈ R |Qi −µBT
i Bi ≺ 0

}

6= /0 and so µ̄i := infMi < +∞.
Then, sups∈S inf

{

µ ∈ R | Q(s)−µBT (s)B(s)≺ 0
}

=
sup{µ̄1, ..., µ̄N} < +∞. From Lemma 4 it follows that
(F2a) =⇒ (F2e). The implications (F2e) ⇒ (F2f) ⇒
(F2g) ⇒ (F2a) and (F2d) ⇒ (F2c) ⇒ (F2b) ⇒ (F2a) are

immediate. For the last statement of the corollary, define
the set Si := {s ∈ S | (Q(s) ,B(s)) = (Qi,Bi)}, consider any
µi ∈

{

µ ∈ R |Qi −µBT
i Bi ≺ 0

}

and µ (s) = µi, s ∈ Si.
One particular case of interest for the Corollary 1 is when

the system parameters Q(s) and B(s) represent a switching
system, and the parameter set is interpreted as continuous
time, S = R, or as discrete time, S = Z. Note that if (Qi,Bi)
are appropriately chosen, then the Corollary 1 states that, no
matter which switching policy is used, there always exists
a continuous or even a constant solution µ . The derivation
of Finsler’s lemma versions for switching systems is now
immediate. One such lemma is given in the following.

Lemma 5. Consider matrix sequences Q(k) ∈
{

Q1, ...,QNQ

}

⊂ S
n and B(k) ∈ {B1, ...,BNB} ⊂ R

m×n,
k = 1,2, .... Then the following statements are equivalent:

(i) For each k = 1,2, ..., one has xT Q(k)x< 0 for all x∈R
n

such that x 6= 0 and B(k)x = 0.
(ii) There exists a constant µ̄ ∈R such that Qi− µ̄BT

j B j ≺ 0
for every i ∈ {1, ...,NQ} and for every j ∈ {1, ...,NB}.

The next theorem gives conditions for the existence of a
continuous solution when it is known that a pointwise solution
exists.

Theorem 4. Let Q : S → S
n and B : S → R

m×n be continuous
functions on S ⊆R

d . Then the statements (F2a) and (F2b) are
equivalent. If further, S is a compact set, then the statements
from (F2a) to (F2e) are all equivalent.

Proof: Define the function µinf : S → R ∪
{−∞} as µinf(s) := inf M (s) where M (s) :=
{

µ ∈ R | Q(s)−µBT (s)B(s)≺ 0
}

. By (F2a), that is,
non emptiness of M (s) , it is clear that µinf (s) < +∞ for
all s ∈ S and µinf(s) = −∞ for s ∈ S at which Q(s) ≺ 0 and
B(s) = 0. Since µ̄ ∈ M (s) implies that µ̄ +α ∈ M (s) for
any α > 0, the set M (s) is an open interval of the form
M (s) = (µinf(s),+∞) . Taking the induced topology of Rd on
S, one can use the same arguments in the proof for continuity
on R

d of Lemma 3.1 of [20] to conclude that the extended
real-valued function µinf is continuous on S.

Now, take any ε > 0 and define the real valued function
µ̃(s) := max{µinf(s)+ ε ,0}. It is clear that µ̃ : S → R is a
continuous function with µ̃(s) ∈ M (s) for all s ∈ S. Thus
(F2b) is satisfied with µ̃ .

Theorem 4 states that a continuous solution exists if Q and
B are continuous over an arbitrary subset S ⊆R

d . In contrast,
Theorem 2 allows a polynomial solution but just when S
is compact. Theorem 1 allows a polynomial solution if the
functions Q and B are polynomials over S = R

d .
The next example illustrates an application of Theorem 4

in the context of non-linear systems.

Example 2. Consider

ẋ = f (x, t)+BT (x, t)u, t > 0 (5)

where x∈R
n and u∈R

m are the state and the control variables,
respectively. The functions f : Rn ×R

+ → R
n and B : Rn ×

R
+ → R

m×n are assumed to be smooth. In [33] it is shown
that system (5) is universally exponentially stabilizable with
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rate λ if there exists a positive definite matrix valued function
M : Rn×R

+ → S
n
>0 and a function ρ : Rn×R

+ →R such that

Ṁ+

(

∂ f
∂x

)T

M+M

(

∂ f
∂x

)

−ρMBT BM+2λM � 0 (6)

for all x ∈ R
n and t > 0.

Since the direct solution to (6) is very hard to be obtained,
for simplicity, one may consider a restricted search space by
choosing M = I. This results in

Q(x)−ρ(x)BT (x)B(x)�−2λ I ≺ 0 (7)

with

Q(x) :=

(

∂ f
∂x

)T

+

(

∂ f
∂x

)

.

Note that even in this simplified context, the search space is
still very big since, in principle, ρ(x) could have any structure.
Theorem 4 can be called to reduce the search space since it
guarantees that there is no loss of generality to assume that a
continuous solution ρ(x) exists. In fact, consider, for example,
(5) with

f (x, t)=

[

−ex1 + x3
2

x1

]

,BT (x, t)=

[

0
1

]

,Q(x)=

[

−ex1 1+3x2
2

1+3x2
2 0

]

.

One has that the continuous function ρ(x) = e−x1 guarantees
that (7) holds for all x ∈R

2 and then, the system is universally
exponentially stabilizable.

One interesting consequence of considering continuity of
the Finsler’s parameter with non-compact S or non-polynomial
Q(s) and B(s) is that it opens the investigation of relaxation
in more general contexts. In fact, the property that a contin-
uous function can be uniformly approximated by polynomial
functions on compact subsets is what guarantees that one can
reduce the search space from the set of continuous functions
to the set of polynomial functions. For more general subsets,
it is known that without compactness but under some other
technical conditions, a continuous function can be uniformly
approximated by rational functions [34, pp.293-295] or still
by functions with some other specific structure [35].

For general sets S or functions Q(s) and B(s), it is very
hard to check (4). Nevertheless bounds on Q(s) and B(s) can
be used for simpler tests as presented in the next lemma.

Lemma 6. Let Q : S → S
n and B : S → R

m×n be functions on
S ⊂ R

d and let ℓQ, ℓR,uQ,uR : S → R such that for all s ∈ S,

ℓQ (s) In � Q(s)� uQ (s) In, ℓR (s) In � BT (s)B(s)� uR (s) In.

Then, a necessary condition for (4) is

sup
s∈S

inf{µ ∈ R≥0 | ℓQ (s)−µuR (s)< 0}< ∞ (8)

and a sufficient condition for (4) is

sup
s∈S

inf{µ ∈ R≥0 | uQ (s)−µℓR (s)< 0}< ∞. (9)

In particular, if Q and B are scalar functions, a necessary
and sufficient condition for (4) is

Q(s)< 0, ∀s ∈ S0 and sup
s∈S+

Q(s)
B2 (s)

< ∞

where S0 = {s ∈ S | B(s) = 0} and S+ = S\S0.

Proof: For (s,µ) ∈ S × R, define α (s,µ) =
[ℓQ (s)−µuR (s)] In, β (s,µ) = Q(s) − µBT (s)B(s) and
γ (s,µ) = [uQ (s)−µℓR (s)] In. For each s ∈ S, we have that
α (s,µ)� β (s,µ)� γ (s,µ), for all µ ≥ 0. Therefore

{µ ≥ 0 | γ (s,µ)≺ 0} ⊆ {µ ≥ 0 | β (s,µ)≺ 0}

⊆ {µ ≥ 0 | α (s,µ)≺ 0} .
(10)

[Sufficiency] From (10), +∞ > sups∈S inf{µ ≥ 0 | γ (s,µ)≺
0} ≥ sups∈S inf{µ ≥ 0 | β (s,µ) ≺ 0} ≥ sups∈S inf{µ ∈ R |
β (s,µ)≺ 0}.

[Necessity] Since sups∈S inf{µ ∈ R | β (s,µ)≺ 0} < +∞,
exists m > 0 such that inf{µ ∈ R | β (s,µ)≺ 0} < m, ∀s.
Therefore, m ∈ {µ ∈ R | β (s,µ)≺ 0} , ∀s. Since m > 0,
we also have that m ∈ {µ ≥ 0 | β (s,µ)≺ 0} , ∀s. From
(10) it follows that m ∈ {µ ≥ 0 | α (s,µ)≺ 0} , ∀s.
Therefore, inf{µ ≥ 0 | α (s,µ)≺ 0} ≤ m, ∀s and
sups∈S inf{µ ≥ 0 | α (s,µ)≺ 0} ≤ m <+∞.

Different from the previous results, the next theorem
presents a simple case where it is possible to assure the
existence of a solution.

Theorem 5. Let Q : S → S
n and B : S → R

m×n be matrix val-
ued functions on S ⊆R

d . If there are functions ℓR,uQ : S →R

such that for all s ∈ S,

0 ≺ ℓR (s) In � BT (s)B(s), Q(s)� uQ (s) In,

then the statement (F2a) holds. If further, ℓR and uQ are
continuous then the statement (F2b) holds. Moreover, if further
ℓR and uQ are continuous and S is compact, then all the
statements from (F2a) to (F2e) hold. In particular, one solution
to (F2e) is

µ̄ = sup
s∈S

uQ(s)+ |uQ(s)|
ℓR(s)

+1.

Proof: Since ℓR (s)> 0, it follows that B(s) is full column
rank for each s ∈ S, BT (s)B(s) ∈ S

n
>0. Thus, the function

µ (s) obtained by extending Lemma 7 pointwisely is such that
Q(s)−µ (s)BT (s)B(s)≺ 0 and therefore (F2a) holds. If the
functions ℓR and uQ are continuous, then µ (s) is continuous
on S. If in addition S is compact, then by Theorem 3 the
statements from (F2a) to (F2e) are all equivalent.

Theorem 5 can be used for determining continuous solution
µ (s) even in the case where the matrix valued functions
Q(s) and B(s) are not continuous. It is only necessary to
find continuous bounding functions ℓR (s) and uQ (s). In the
case where the functions Q(s) and B(s) are continuous, one
can choose ℓR (s) = λmin(BT (s)B(s)), uQ (s) = λmax(Q(s)) and
then, the following corollary can be stated.

Corollary 2. Let Q : S → S
n and B : S → R

m×n be matrix
valued functions on S ⊆ R

d with B(s) full column rank for
every s ∈ S. Then the statement (F2a) holds. If further, Q and
B are continuous then the statement (F2b) holds. Moreover,
if further Q and B are continuous and S is compact, then all
the statements from (F2a) to (F2e) hold. In particular, one
solution to (F2e) is

µ̄ = sup
s∈S

λmax(Q(s))+ |λmax(Q(s))|
λmin(BT (s)B(s))

+1.
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Other combinations considering constant, polynomial, etc.
functional dependence of bounding functions ℓR (s) and uQ (s)
can be trivially obtained. In the next section we comment
on how the above theorems can be applied to give simpler
functional solutions X (s) for the PD-LMI in (F3).

B. Consequences for the matrix-valued function X (s)

In many control problems, one may be led to a PD-LMI in
the (F3) formalism, that is, to the problem of finding a matrix
function X : S → R

n×m satisfying (F3).
It is known that the general results of Theorem 1 and

Theorem 2 are valid for (F3) in the sense that, under their
hypotheses, if there is a solution to (F3) then there also exists
a rational or a polynomial solution, respectively.

Remembering that if µ (s) is a solution to (F2) then X (s) =
− 1

2 µ (s)BT (s) is a solution to (F3), it is easy to apply the
results of Section III-A to give some sufficient conditions
that allow simple functional dependence like continuity or
polynomial dependence on s for the variable X (s) in (F3)
without loss of generality. Among these possible extensions,
one may point out the next theorem which deals with a case
closely related to [10] and [20].

Theorem 6. Let Q : S → S
n and B : S → R

m×n be matrix
valued functions on S⊆R

d . Suppose that B(s) is a polynomial
matrix.

If S =R
d and Q is polynomial, it follows that if there exists

a solution X :Rd →R
n×m to (F3), then there is also a solution

X̄ : Rd → R
n×m that is a polynomial matrix.

If S⊂R
d is compact, Q is continuous and B is polynomial of

degree g, it follows that if there exists a solution X : S →R
n×m

to (F3), then there is also a solution X̄ : S → R
n×m that is a

polynomial matrix of degree g. In particular, if g = 0, then X̄
can be taken as constant.

Proof: If there exists a matrix valued function X : S →
R

n×m such that (F3) holds, then it follows directly from
Lemma 3 that there exists a function µ : S → R satisfying
(F2a).

Suppose that S = R
d and Q is polynomial. Since Q and B

are polynomial matrices over R
d , by Theorem 1 it follows

that there exists a polynomial µ̄ satisfying (F2d). By taking
X̄(s) =− 1

2 µ̄(s)BT (s), we have that X̄ is a polynomial matrix.
Suppose now that S ⊂ R

d is compact. Since Q and B are
continuous functions and S is compact, by Theorem 4 it
follows that there exists a constant µ̄ ∈ R satisfying (F2e).
The result follows now by taking X̄(s) =− 1

2 µ̄BT (s).
In contrast to [20], this theorem presents a case where beside

knowing the existence of a polynomial solution, it is also
possible to define its degree. This result is useful to reduce
the search space to polynomial solutions of degree less than or
equal to some specific degree, as the next example illustrates.
The example concerns how Finsler’s lemma is applied along
relaxation techniques to transform a PD-LMI into a set of
LMIs. This technique has been applied, for instance in [12],
where the effectiveness of this approach is illustrated in the
evaluation of LMI methods for robust performance analysis of
closed-loop longitudinal dynamics of a civil aircraft.

Example 3. Consider a linear system with polytopic uncer-
tainties, that is,

ẋ = A(α)x(t), (11)

with A(α) = ∑N
i=1 αiAi, where Ai ∈ R

n×n are the vertices of
A(α) and α ∈ ∆N :=

{

θ ∈ R
N | ∑N

i=1 θi = 1,θi ≥ 0
}

.
The system (11) is robustly stable if and only if there exists

P : ∆N → S
n satisfying P(α)≻ 0 and

AT (α)P(α)+P(α)A(α)≺ 0 (12)

for all α ∈ ∆N . In order to relax this PD-LMI into a finite set
of LMIs one can impose a polynomial structure with degree g
in P(α) [11] (note that there is no loss of generality in using a
polynomial structure by Theorem 2). For instance, considering
that g= 1, P(α) =∑N

i=1 αiPi yields the PD-LMIs ∑N
i=1 αiPi ≻ 0

and
N

∑
i=1

α2
i (A

T
i Pi +PiAi)+

N−1

∑
i=1

N

∑
j=i+1

αiα j
(

AT
i Pj +PjAi

)

≺ 0

and, consequently, a sufficient condition to the robust stability
of system (11) is that the following set of LMIs is satisfied:

Pi ≻ 0, AT
i Pj +PjAi, i, j = 1, . . . ,N.

As shown in [11], in order to obtain a possible less conserva-
tive set of LMIs that implies the robust stability of (11), instead
of applying the relaxation procedure to the standard Lyapunov
PD-LMI (12), the relaxation can be applied by imposing a
polynomial structure with degree g in the variables P(α) and
X(α) of the PD-LMIs P(α)≻ 0 and
[

0 P(α)
P(α) 0

]

+X(α)
[

A(α) −I
]

+

[

AT (α)
−I

]

XT (α)≺ 0.

In this case, there are

n(5n+1)(N +g−1)!/(2g!(N −1)!)

LMI scalar variables [11]. However, by using Theorem 6 the
search of a polynomial solution to X(α) can be reduced,
without loss of generality, to the search of linear solutions.
This leads to

n(n+1)(N +g−1)!/(2g!(N −1)!)+2n2N

scalar variables, which represents a search space reduction of
n2O(Ng) scalar variables.

IV. CONCLUSION

In this technical note, it was proposed a set of sufficient
conditions which allows the use of simple structures in the
extra variable introduced by Finsler’s lemma in the context of
parameter dependent matrices. Since an unnecessarily com-
plicated structure of parameter dependent variables increases
the computational burden without reducing the conservatism,
the results of this note may contribute to the reduction of the
computational costs for stability analysis, controller and filter
design, and any other parameter dependent results that can
be built upon the Finsler’s lemma for parameter dependent
systems. While some progress has been made in the extra
scalar variable, various important issues ask for further ef-
forts. Among them, conditions for smooth or analytic scalar
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variables, more general and less conservative conditions for
continuous or polynomial solutions for the extra matrix vari-
able, and extended versions of the Finsler’s lemma such as the
Projection Lemma, seem essential for extending optimization,
control and filter design techniques for parameter dependent
systems.

APPENDIX

Lemma 7. Let M ∈ S
n and N ∈ S

n
>0. Then there exists µ ∈R

such that M−µN ≺ 0. In fact, one such µ is given by

µ =
uM + |uM|

ℓN
+1,

where ℓN and uM are any real numbers such that 0 ≺ ℓNIn �
N and M � uMIn. In particular, for ℓN = λmin(N) and uM =
λmax(M) one has

µ =
λmax(M)+ |λmax(M)|

λmin(N)
+1.

Proof: Since N ≻ 0, one has that there exists ℓN ∈R such
that 0 ≺ ℓNIn � N. Moreover, the fact that M ∈ S

n yields that
there exists uM ∈ R such that M � uMIn and

ℓNM � uMℓNIn. (13)

Since uM ∈R and ℓN > 0, there exists η > 0 such that uM +
ηℓN > 0. Indeed, it is enough to take η = |uM |

ℓN
+1. From η > 0

and ℓN > 0 it follows that

uMℓN < (uM +ηℓN)ℓN . (14)

Inequalities (13) and (14) yields ℓNM ≺ (uM +ηℓN)ℓNIn �
(uM +ηℓN)N. Since ℓN ≻ 0, it is enough to take

µ =
uM +ηℓN

ℓN
=

uM + |uM|

ℓN
+1.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for the excellent suggestions and comments which led to
significant improvements of the paper. We are grateful to
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