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Uniform versions of Finsler’s lemma

H. T. M. Kussaba, J. Y. Ishihara, R. A. Borges

Abstract— Finsler’s lemma and its variants are used exten-
sively in control and optimization literature. Although there
are several variants of this lemma, it can be summarized as an
equivalence of a quadratic inequality with a linear constraint
to a linear matrix inequality (LMI) with possibly more extra
variables than the original problem. When applying Finsler’s
lemma to problems that depends of a parameter, the extra
variables stemming from the use of Finsler’s lemma can also
be dependent of this parameter. In this paper it is investigated
when these extra variables can assume a simple structure
without loss of generality and some sufficient conditions that
guarantees this assumption are given. These sufficient condi-
tions can be applied when investigating parameter dependent
LMIs that emerge, for instance, when dealing with the robust
stability of systems with polytopic uncertainty.

Index Terms— Finsler’s lemma, Linear matrix inequality,
Robust stability

I. INTRODUCTION

Some problems in system and control theory can fre-
quently be recast as a feasibility test asking the existence
of a positive definite (or negative definite) matrix satisfying
a constraint—for instance, the classical Lyapunov’s theorem
[1] says that the asymptotically stability of a linear system

ẋ(t) = Ax(t) (1)

is equivalent to the existence of a symmetric matrix P
satisfying the inequality[

P 0
0 −(AT P+PA)

]
� 0, (2)

where the symbol � denotes that the above matrix is positive
definite. Restating the above problem in a more abstract way,
the problem is equivalent to find a matrix X such that

F(X)� 0, (3)

where F : Rm×n → Sp×p is a function of the set of real
matrices m×n to the set of symmetric real matrices of order
p× p. In particular, when F is affine, that is, F(X)−F(0)
is linear in X , this type of problem is known as a linear
matrix inequality (LMI). Besides the stability criterion for
linear system given in (2), several other analysis and design
problems of control systems can be established via the LMI
approach, such as controllability, reachability, observability,
detectability, H 2 and H ∞ performance analysis, as well
control and filter synthesis [2]–[4]. It should also be noted
that there are several computational packages specialized
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in efficiently solving LMIs, to name a few: LMI Control
Toolbox [5], SeDuMi [6] and SDPT3 [7] for MATLAB,
CSDP [8] for the C programming language and SDPA [9]
for the C++ programming languages.

When the matrices of the control system, however, has
dependence on a parameter (such as the case of uncertain and
linear parameter varying systems (LPV) [10], for instance),
the LMIs also become dependent on this parameter and their
feasibility is possibly an infinite dimensional problem. For
example, if the matrix A in (1) was not precisely known
but had an uncertainty α ∈ S, one must had to check (2)
for every α ∈ S, i.e. it would be necessary to find a matrix
valued function P : S→ Sn×n satisfying[

P(α) 0
0 −AT (α)P(α)−P(α)A(α)

]
� 0, ∀α ∈ S. (4)

The inequality (4) is the first example of a parameter
dependent LMI (PD-LMI). Depending on the properties of
the set S, the problem is not computationally tractable:
for instance, if S is infinite, it is known that a generic
PD-LMI is NP-hard [11]. Nevertheless, there have been
several approaches in the linear matrix inequality literature
to relax PD-LMIs problems. For instance, a naive method
to solve (4) would be to approximate S by a finite set of
points—this would relax the PD-LMI into a finite number
of LMIs. However, this method usually requires a great
number of points to its results become satisfactory, which
generates a heavy computational load. Moreover, if some
points are excluded it is possible that the result turns out to
be excessively optimist [12].

An alternative relaxation procedure to this method is
using a polynomial relaxation. This relaxation procedure
consists in restricting the matrix valued functions that are
variables of the PD-LMI to matrix polynomials functions
of a fixed degree g and using the matrix coefficients of
the polynomial stemmed of this procedure to generates new
LMIs independent of the parameter that imply the original
PD-LMI condition. With the increase of the degree g of the
polynomial, less conservative sets of conditions can be found
that imply the original PD-LMI. In fact, in [13] it is proved
that if a PD-LMI has a solution, S is compact and the LMI
depends continuously in the parameter, then without loss
of generality, there exists a solution that is a polynomial
matrix for this PD-LMI. In the particular case that S is a
unit-simplex, there will also be, without loss of generality, a
solution that is a homogeneous polynomial matrix [14].

Along with the technique of polynomial relaxation, one
may also use Finsler’s lemma to achieve less conserva-
tiveness by the introduction of extra variables to the LMI



[15]. For instance, in the context of robust stability, PD-LMI
conditions which contains (4) can be formulated by using
Finsler’s lemma [16]. In [17], this technique is used for
investigating the quadratic stabilizability of Takagi-Suzeno
fuzzy systems.

In all of the aforementioned papers, the extra variables
introduced by Finsler’s lemma are parameter dependent. The
use of parameter dependent variables are applied to lessen
the conservatism at the cost of increasing computational
burden. However, there are some cases in which a parameter
independent variable is as good as a parameter dependent
variable indicating that there is no gain to impose a structure
to the extra variable as shown by the main results proposed
in this paper.

Notation: In the sequel the following notation will be used:
N is the set of non-negative integer numbers, R the set of real
numbers, Rm×n the set of real matrices of order m× n, Sn

the set of symmetric real matrices of order n×n, Sn
+ the set

of symmetric positive definite matrices of order n×n. N ≺ 0
indicates that N is a symmetric negative definite matrix. AT

denotes the transpose of matrix A.

II. MAIN RESULTS

Finsler’s lemma is one of the most important tools in
the control literature. It is used to eliminate variables from
matrix inequalities in order to turn the problem into a simpler
form, or to introduce slack variables in order to lessen
conservativeness [16], [18].

The assertion of the Finsler’s lemma is the equivalence
between a statement about a quadratic inequality with linear
constraint and another statements about the negative definite-
ness of a matrix as stated below.

Lemma 1. [19] Let x ∈ Rn, Q ∈ Sn and B ∈ Rm×n, with
rank(B)< n. Then the following statements are equivalent:

i) xT Qx < 0 for all x ∈ Rn such that x 6= 0 and Bx = 0.
ii) There exists µ ∈ R such that Q−µBT B≺ 0.

The importance of this lemma can be noted by the
existence of several variants along the literature [15] and
by the fact that it is equivalent to other important results in
control literature such as Yakubovich’s S-lemma [20]. In fact,
Finsler’s lemma have been proved several times; for proofs
of it the reader is referred to the papers [15], [21]–[24].

When treating uncertain systems, the matrices Q or B can
become dependent of a parameter and a pointwise extension
of Finsler’s lemma is easily obtained as stated in Lemma 2.

Lemma 2. Let S⊆R, x ∈ Rn, Q : S→ Sn and B : S→ Rm×n,
with rank(B(s)) < n for all s ∈ S. Then the following state-
ments are equivalent:
(F1) For each s ∈ S, one has xT Q(s)x < 0 for all x ∈ Rn

such that x 6= 0 and B(s)x = 0.
(F2) (∀s ∈ S)(∃µ (s) ∈ R) : Q(s)−µ (s)BT (s)B(s)≺ 0.

Proof: Follows directly from extending Lemma 1
pointwisely.
In this context, the main goal of this paper is to investigate
if (F2) is also valid uniformly in µ , that is, if

(F3) (∃µ̄ ∈ R)(∀s ∈ S) : Q(s)− µ̄BT (s)B(s)≺ 0.

It is obvious that (F3) implies (F2), however as shown
in the following counterexample, the uniformity in the extra
variable µ is not true in general and extra hypothesis are
necessary to assure that (F2) implies (F3).

Example 1. Let Q : S→ R2×2, B : S→ R1×2 and S ⊂ R be
given by

Q(s) =
[
−1 0
0 s

]
, BT (s) =

[
0
s

]
and S = (0,1].

One has that

Q(s)−µ (s)BT (s)B(s) =
[
−1 0
0 s−µ (s)s2

]
≺ 0,

which is valid if and only if s−µ (s)s2 < 0. Since 0 /∈ S, it
follows that 1/s < µ (s).

Thus, to grant that (F2) will be satisfied one can take
µ (s) = 1

s +ε with ε > 0. However, (F3) can not be guaran-
teed since the function 1/s grows without bound as s goes
to 0.

The first result of this paper, a sufficient condition to
guarantee the uniformity in µ , is given next in Lemma 3.

Lemma 3. Let Q : S→ Sn and B : S→ Rm×n be functions
on S⊆ R such that

sup
s∈S

inf
{

µ ∈ R | Q(s)−µBT (s)B(s)≺ 0
}
< ∞. (5)

Then the statements (F2) and (F3) are equivalent.

Proof: The proof that (F3) implies (F2) is immediate.
We now prove that (F2) implies (F3). For each s∈ S, define

M (s) =
{

µ ∈ R | Q(s)−µBT (s)B(s)≺ 0
}
.

By (F2), one has that M (s) 6= /0. One also has that if
µ? ∈M (s), then (µ∗+α) ∈M (s) for all α ≥ 0, since

0�Q(s)−µ
∗BT (s)B(s)

�Q(s)−µ
∗BT (s)B(s)−αBT (s)B(s)︸ ︷︷ ︸

�0

=Q(s)− (µ∗+α)BT (s)B(s) .

Therefore, there always exists a µ∗ ∈M (s) such that
[µ∗,∞)⊆M (s).

By (5), there exists m ∈ R such that

inf
{

µ ∈ R | Q(s)−µBT (s)B(s)≺ 0
}
< m, ∀s ∈ S.

Consequently, m ∈M (s) for all s ∈ S and µ̄ = m is such
that (F3) holds.
It is important to note that although Lemma 3 is very general
and does not require any special structure on the functions
Q and B nor in the set S, it is very hard to check (5).

Nevertheless, Lemma 3 can be used together with condi-
tions on the functions Q and B for derive simpler criteria to
the uniformity of µ as it is done in the following Theorem 1.



Theorem 1. Let Q : S→ Sn and B : S→ Rm×n be continuous
functions on a compact S⊂ R. If

KerB(s) = K, ∀s ∈ S, (6)

then the statements (F2) and (F3) are equivalent.

Proof: The proof that (F3) implies (F2) is immediate.
We now prove that (F2) implies (F3). Let k := dimK. One
has that rankB(s) is independent of s since

rankB(s) = n−dimK = n− k.

Consider an orthogonal decomposition of Rn given by

Rn = K⊥⊕K

where ⊕ denotes the direct sum of vector spaces. Consider
also a block matrix

[
C1 C

]
such that the columns of C1

form a basis for K⊥ and the columns of C form a basis for
K. It follows that

B(s)
[
C1 C

]
=
[
B1 (s) 0

]
,

where B1 (s) ∈ Rm×(n−k) for all s ∈ S.
One has that B1 (s) is full column rank. In fact,

rankB1 (s) = rank
[
B1 (s) 0

]
= rankB(s)

[
C1 C

]
= rankB(s)

= n− k,

where the third equality follows since
[
C1 C

]
is full rank.

Thus, R(s) :=BT
1 (s)B1 (s) is invertible for each s∈ S. One

also has that R(s) is continuous on S because since B(s) is
continuous, B1 (s) = B(s)C1 is also continuous on S.

By congruence transform, one has that

Q(s)−µ (s)BT (s)B(s)≺ 0

if and only if[
CT

1
CT

](
Q(s)−µ (s)BT (s)B(s)

)[
C1 C

]
=[

Q̄11 (s)−µ (s)BT
1 (s)B1 (s) Q̄12 (s)

Q̄T
12 (s) Q̄22 (s)

]
≺ 0, (7)

where Q̄11(s) =CT
1 Q(s)C1, Q̄12(s) =CT

1 Q(s)C and Q̄22(s) =
CT Q(s)C.

Applying a Schur transform, (7) is equivalent to Q̄22 ≺ 0
and

Q̄11 (s)− Q̄12 (s) Q̄−1
22 (s) Q̄T

12 (s)−µ (s)BT
1 (s)B1 (s)≺ 0.

Consequently, defining

Q̂(s) = Q̄11 (s)− Q̄12 (s) Q̄−1
22 (s) Q̄T

12 (s)

one has that{
µ ∈ R | Q(s)−µ (s)BT (s)B(s)≺ 0

}
={

µ ∈ R | Q̂(s)−µ (s)BT
1 (s)B1 (s)≺ 0

}
.

Since Q is continuous, it follows that Q̄11, Q̄12 and Q̄22
are continuous. As a result, Q̂ is also continuous. Let R

1
2 (s)

be a matrix square root of R(s) := BT
1 (s)B1 (s). Since BT

1 is
continuous, R

1
2 is also continuous.

Also, one has that

Q̂(s)−µ (s)BT
1 (s)B1 (s)≺ 0

if and only if

R−
1
2 (s) Q̂(s)R−

1
2 (s)−µ (s) I ≺ 0.

Defining Q∗1 (s) := R−
1
2 (s) Q̂(s)R−

1
2 (s) it follows that Q∗1

is continuous and that

inf{µ ∈ R | Q∗1 (s)−µI ≺ 0}= inf{µ ∈ R | Q∗1 (s)≺ µI}
= inf{µ ∈ R | λmax [Q∗1 (s)]< µ}
= λmax [Q∗1 (s)] .

Since S is compact and the function λmax is continuous,
one has by Weierstrass’ theorem that

sup
s∈S

inf
{

µ ∈ R | Q(s)−µBT (s)B(s)≺ 0
}

= sup
s∈S
{λmax [Q∗1 (s)]}< ∞.

By Lemma 3, the result follows.
It is important to note that Theorem 1 does not assume any
requirement in the function µ(s) and this function can even
be discontinuous.

In counterpart, if the function µ(s) is known to be contin-
uous then the requirement of continuity of Q and B can be
dropped. This is shown in Theorem 2.

Theorem 2. Let Q : S→ Sn and B : S→ Rm×n be matrix
valued functions on a compact S ⊂ R. Then the following
statements are equivalent:

i) There exists a continuous function µ : S→R such that
Q(s)−µ(s)BT (s)B(s)≺ 0 for every s ∈ S.

ii) There exists µ̄ ∈ R such that Q(s)− µ̄BT (s)B(s) ≺ 0
for every s ∈ S.

Proof: If ii) is valid, then µ(s) = µ̄ satisfies i). Suppose
now that i) is valid. By Weierstrass’ theorem, the function µ

has an maximum m in S. Thus

0� Q(s)−µ(s)BT (s)B(s)� Q(s)−mBT (s)B(s)

and ii) is satisfied with µ̄ = m.
The next Lemma 4 is an auxiliary result to give an useful
criterion to check for the existence of a continuous µ .

Lemma 4. Let M ∈ Sn and N ∈ Sn
+. Then exists µ ∈R such

that
M−µN ≺ 0.

In fact, one such µ is given by

µ =
λmax(M)+ |λmax(M)|

λmin(N)
+1.

Proof: Since N � 0, one has that

0≺ λmin(N)I � N. (8)



Moreover, the fact that M ∈ Sn yields

λmin(N)M � λmax(M)λmin(N)I. (9)

Since λmax(M) ∈ R and λmin(N) > 0, exists η > 0 such
that

λmax(M)+ηλmin(N)> 0. (10)

In fact, it is enough to take

η =
|λmax(M)|
λmin(N)

+1.

From η > 0 and λmin(N)> 0 it follows that

λmax(M)< λmax(M)+ηλmin(N)

and

λmax(M)λmin(N)< [λmax(M)+ηλmin(N)]λmin(N). (11)

Inequalities (9) and (11) yields

λmin(N)M ≺ λmin(N) [λmax(M)+ηλmin(N)] I

� [λmax(M)+ηλmin(N)]N.

Since λmin(N)� 0,

M−
[

λmax(M)+ηλmin(N)

λmin(N)

]
N ≺ 0.

Therefore it is enough to take

µ =
λmax(M)+ηλmin(N)

λmin(N)
=

λmin(N)+λmax(M)+ |λmax(M)|
λmin(N)

.

Corollary 1. Consider Q : S→ Sn and B : S→ Rm×n be
continuous matrix valued functions on S⊆R such that B(s) is
full column rank for every s ∈ S. Then there exists µ : S→R
continuous such that

Q(s)−µ(s)BT (s)B(s)≺ 0, ∀s ∈ S.

One such function µ is

µ(s) =
λmax(Q(s))+ |λmax(Q(s))|

λmin(BT (s)B(s))
+1.

Proof: Follows directly from Lemma 4 and from the
fact that λmax and λmin are continuous functions on their
arguments.
The following corollary from Theorem 2 is important in
the context of polynomial relaxation procedures for PD-
LMIs [13], [14], wherein is assumed that µ is a polynomial
function.

Corollary 2. Let Q : S→ Sn and B : S→ Rm×n be matrix
valued functions on a compact S ⊂ R. Then the following
statements are equivalent:

i) There exists a polynomial function µ(s) such that
Q(s)−µ(s)BT (s)B(s)≺ 0 for every s ∈ S.

ii) For every s ∈ S there exists µ̄ ∈ R such that Q(s)−
µ̄BT (s)B(s)≺ 0.

If S = Rd , it is possible to assume without loss of
generality that µ is a rational function without singularities

(for d = 1, this is equivalent to a polynomial function) with
extra assumptions in the structure of the functions Q and B.
Precisely, Q and B must be matrix polynomials, which is
defined in Definition 1.

Definition 1. A matrix polynomial H of degree g is a
function from S⊆ Rd to Rm×n that for s = (s1, . . . ,sd) ∈ Rd

can be expressed as

H(s) = ∑
β∈I(g)

Hβ1,...,βd
sβ1

1 · · ·s
βd
d ,

where Hβ1,...,βd
∈ Rm×n are the matrices coefficients of H

and

I(g) =

{
β = (β1, . . .βd) ∈ Nd

∣∣∣∣∣ d

∑
i=1

βi ≤ g

}
.

The set of all matrix polynomials will be denoted as
Rm×n(R[s1, . . . ,sd ]). In particular, the set of matrix polyno-
mials which takes values on symmetric matrices of order n
will be denoted as Sn(R[s1, . . . ,sd ]).

Theorem 3 below states that if Q and B are matrix polyno-
mials and S =Rd then the existence of a pointwise solution
for (F2) is enough to assure the existence of a rational
function without singularities satisfying the inequality in
(F2). This theorem is a particular case of a more general
result of [25].

Theorem 3. If Q ∈ Sn(R[s1, . . . ,sd ]) and B ∈
Rm×n(R[s1, . . . ,sd ]) are matrix polynomials, then the
following statements are equivalent:

i) For each s∈Rn there exists µ(s)∈R such that Q(s)−
µ(s)BT (s)B(s)≺ 0.

ii) There exists a rational function µ : Rd → R without
singularities such that Q(s)− µ(s)BT (s)B(s) ≺ 0 for
every s ∈ Rd .

Proof: For the proof, the following result from [25]
will be used: suppose G∈ Sn(R[s1, . . . ,sd ]) is such that G(a)
is negative semidefinite for every a outside some ball in Rd .
Then for every F ∈ Sn(R[s1, . . . ,sd ]) the following statements
are equivalent:

1) For every a∈Rd there exists r(a)∈R such that F(a)−
r(a)G(a)� 0.

2) There exists a rational function r(x) without singular-
ities such that F(a)− r(a)G(a)� 0 for every a ∈ Rd .

The statement of theorem now follows directly by choosing
Q =−F and G =−BT B� 0.
The sufficient conditions proposed in this section enable the
uniformity of the extra variable introduced by the application
of Finsler’s lemma in the context of parameter dependent
matrices. In the next section, we highlight some situations
where nothing is gained imposing additional structures in
the extra scalar variable, since one can always choose it as a
constant variable for all parameters of the involved dependent
matrices.



III. APPLICATIONS

In this section, some examples of applications of the
results of Section II will be given.

Example 2. Consider an uncertain continuous-time linear
system

ẋ(t) = A(α)x(t), (12)

where

A(α) =
N

∑
i=1

αiAi

and the value of the parameter α ∈ RN is unknown, but
belonging to the unit N-simplex

∆N =

{
θ ∈ RN

∣∣∣∣∣ N

∑
i=1

θi = 1, θi ≥ 0

}
.

Proceeding as in [15] and using Finsler’s lemma
(Lemma 2) with

Q(α) =

[
0 P
P 0

]
, BT (α) =

[
AT (α)
−I

]
,

it is possible to prove that one sufficient condition to the
robust stability of (12) is the existence of a positive definite
matrix P ∈ Sn

+ and a scalar function µ : ∆N → R such that[
−µ(α)AT (α)A(α) µ(α)AT (α)+P

µ(α)A(α)+P −µ(α)I

]
≺ 0 (13)

holds for all α ∈ ∆N .
By Corollary 2, there is no gain to assume that µ is a

polynomial function, because if there exists a polynomial µ

satisfying (13), then there will also be a µ̄ ∈ R such that[
−µ̄AT (α)A(α) µ̄AT (α)+P

µ̄A(α)+P −µ̄I

]
≺ 0 (14)

is satisfied.
Moreover, one may check if

Ker
[
A(α) −I

]
is constant with relation to parameter α . If this is true,
then by Theorem 1, the verification of (13) reduces to the
verification of (14).

Example 3. Consider again the polytopic system from
Example 2.

Using a variant of Finsler’s lemma and proceeding as in
[15], it is possible to show that another sufficient condition
for the robust stability of (12) is the existence of a positive
definite matrix P ∈ Sn

+ and n× n matrix valued functions
F(α) and G(α) such that[

AT (α)FT (α)+F(α)A(α) AT (α)GT (α)−F(α)+P
G(α)A(α)−FT (α)+P −G(α)−GT (α)

]
≺ 0

(15)
holds for all α ∈ ∆N . The variables F(α) and G(α) can be
seen as slack variables that augments the search space when
compared with (13).

Following the steps of [15] to prove that (15) is equivalent
to (13) in the case that the matrices are precisely known,

we now prove the equivalence of (15) and (13) in the case
of parameter dependent matrices by introducing additional
hypothesis.

Considering that

X(α) =

[
F(α)
G(α)

]
,

then (13) can be written as

Q(α)−µ(α)BT (α)B(α)≺ 0, (16)

and (15) can be written as

Q(α)+X(α)B(α)+BT (α)XT (α)≺ 0. (17)

Multiplying (17) by left by
(
B⊥
)T

(α) and by right by
B⊥(α) where

B⊥(α) =

[
I

A(α)

]
one has that (17) implies(

B⊥
)T

(α)Q(α)B⊥(α)≺ 0. (18)

Consider now a rank decomposition of B(α) given by
Bl(α)Br(α) and define

D(α) = BT
r (α)

[
Br(α)BT

r (α)
]−1

(BT
l (α)Bl(α))−1/2

and
C(α) =

[
D(α) B⊥(α)

]
.

One has that multiplying (16) by left by CT (α) and by
right by C(α) yields[

DT (α)Q(α)D(α)−µ(α)I DT (α)Q(α)B⊥(α)
B⊥T (α)Q(α)D(α) B⊥T (α)Q(α)B⊥(α)

]
. (19)

If the matrices were parameter independent, it would be
possible to take a sufficiently large µ such that (19) is
negative definite implying that (16) is also negative definite
[15]. However, in the parameter dependent case, µ(α) is an
arbitrary function and there is no more guarantee that exists
a sufficiently large µ(α) such that (19) is negative definite.

Nevertheless, under the extra assumption that Q(α) is a
continuous function and Bl(α) and Br(α) can be chosen
as a continuous functions, then using that ∆N is a compact
set it is possible to prove that there exists an ` ∈ R such
that DT (α)Q(α)D(α) ≺ `I for all α ∈ ∆N . Taking µ > `
sufficiently great, it now holds that (19) is negative definite.

Proceeding as the previous example, if Q and B satisfies
the hypothesis of one of the results of the preceding section,
it is possible to choose without loss of generality a constant
µ(α) = µ̄ .

Taking

F(α) =− µ̄

2
AT (α), G(α) =

µ̄

2
I,

then without loss of generality, G(α) can be assumed as
constant and F(α) can be assumed as a homogeneous
polynomial of degree 1. Thus, in this case, there would be no
gain in imposing a higher order homogeneous polynomial,
or any other more complex structure for F(α).



IV. CONCLUSION

In this paper it is proposed a set of sufficient conditions
which enables the uniformity of the extra variable introduced
by the application of Finsler’s lemma in the context of
parameter dependent matrices. Using these conditions it is
possible to show that nothing is gained imposing additional
structures in the extra scalar variable, since one can always
choose it as a constant variable for all parameters of the
involved dependent matrices.
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[25] J. Cimprič, “Finsler’s lemma for matrix polynomials,” Lin. Alg. Appl.,
vol. 465, pp. 239–261, 2015.


