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Finite time boundedness and stability analysis of discrete time uncertain
systems

H. T. M. Kussaba, J. Y. Ishihara and R. A. Borges

Abstract— In this paper the problems of finite time bound-
edness and stability of uncertain systems in discrete-time
are addressed. By using the Finsler lemma, novel parameter
dependent linear matrix inequalities analysis conditions are
designed. These conditions can be efficiently solved using
a homogeneous polynomial relaxation procedure and readily
available numerical solvers.

In the numerical examples section, it is shown that the
proposed finite time conditions are less conservative than others
linear matrix inequality based conditions proposed in the
literature.

Index Terms— finite time stability, finite time boundedness,
linear matrix inequality, uncertain systems

I. INTRODUCTION

The concept of finite time stability (FTS) was introduced
almost fifty years ago [1]–[3] in order to characterize system
trajectories during a finite time horizon. In contrast to Lya-
punov stability theory, where stability is only a qualitative
property of the system, the finite time stability concept con-
siders qualitative and precise quantitative properties. More
specifically, finite time stability characterizes whether the
trajectories of the system will be restricted to some pre-
scribed constraints during a finite horizon run of the system.
The characterization of system trajectories during transient
time provides a good framework to design control strategies
able to avoid excitation of nonlinear dynamics, deal with
systems with saturation, and so on [4]. Also, in order to
guarantee these prescribed constraints in the presence of
external disturbances, the concept of finite time boundedness
(FTB) was recently introduced in [5].

For linear systems, there are necessary and sufficient FTS
conditions based on differential and difference linear matrix
inequalities (DLMIs) and based on the state transition matrix
of the system [6]–[8]. The FTB analysis is more complex
and, to the best of the authors knowledge, a FTB necessary
and sufficient condition exists only for continuous time sys-
tems [8], [9]. However, since these necessary and sufficient
conditions are in general computationally intractable, most of
the finite time results focused on FTS/FTB sufficient analysis
based on linear matrix inequalities (LMIs) [10]–[12].

In this paper, the problem of FTS/FTB analysis of discrete
time uncertain systems is addressed. Uncertainties in the
parameters of the system are very common in real scenarios
and in many situations they are not negligible and must be
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properly addressed in order to enable a feasible controller
design. For discrete time systems, while in the context of
Lyapunov stability several works have been done regarding
system uncertainties (to name a few examples, [13]–[16]),
in the finite time context few works deal with FTS/FTB
of uncertain systems [12], [17], [18]. In particular, [18]
deals with nonlinear systems with conic-type nonlinearities
and [12] with singular systems with Markovian jumps.
Differently from [12], [17], [18] which use norm bounded
matrix uncertainties together with the Petersen lemma [19],
the uncertainty of the system in this work will be described
using a polytopic representation. In comparison with the
norm-bounded uncertainty representation, the polytopic rep-
resentation is more flexible and describes more accurately
the uncertainty [20, p. 335]. In this context, the polytopic
representation considered in this paper is dealt with the
Finsler’s lemma, Pólya’s theorem and homogeneous poly-
nomial relaxation.

The main contributions of this paper are as following.
To derive the proposed FTS/FTB analysis condition, an
approach based on [21] is used to apply a version of Finsler’s
lemma [22] to a difference inequality from which stems
the FTS/FTB conditions. This approach is new even in
the scenario that the system matrices are precisely known
and provides less conservative analysis conditions when
compared with those appeared in the literature in the context
of LMIs. As mentioned before, there is no necessary and
sufficient characterization for FTB of uncertain discrete-time
systems in the literature, and the proposed conditions, albeit
only sufficient, reduce the conservatism when compared to
the ones from the literature.

This paper is organized as follows. In Section II, is
established the problem of FTS and FTB robustness against
parameter uncertainty in a polytopic region. In Section III
a new LMI analysis condition based on Finsler’s lemma is
derived. Numerical examples are shown in Section IV and
finally, the conclusion is presented in Section V.

In the sequel the following notation will be used: Z+ is
the set of non-negative integer numbers, R is the set of real
numbers, Rm×n is the set of real matrices of order m× n,
Sn is the set of symmetric real matrices of order n×n, Sn

+

is the set of symmetric positive definite matrices of order
n× n. P � 0 indicates that P is symmetric positive definite
matrix. The term ? indicates symmetric terms in symmetric
matrices. λmax(A) and λmin(A) are respectively the maximum
and the minimum eigenvalue of the matrix A. AT denotes
the transpose of matrix A. The matrix In denotes the identity
matrix of order n. The notation He{A} indicates A+AT .



II. PROBLEM STATEMENT AND PRELIMINARY RESULTS

Consider a linear system with k ∈
{

1, . . . ,N f
}

given by

x(k+1) = Ax(k)+Gω(k), (1)

where x(k) ∈Rn is the state space vector, ω(k) ∈Rr is a
noise input and A and G are real matrices with appropriate
dimensions. The concept of FTS is formalized in Defini-
tion 1.

Definition 1. System (1) with G = 0 is finite time stable
with respect to (c1,c2,R,N f ), with c2 > c1 ≥ 0, N f ∈ Z+

and R� 0 if for any solution x of (2) in the time horizon
1≤ k ≤ N f one has that

xT (0)Rx(0)≤ c1 =⇒ xT (k)Rx(k)< c2, ∀k ∈ {1, . . . ,N f }.

The geometric meaning of Definition 1 is illustrated in
Figure 1 for solutions x, y and z of a system: the pair
(c2,R) defines a ellipsoid restraining all the trajectories of
(1) starting in the ellipsoid defined by the pair (c1,R) during
k = 1, . . . ,N f .

xT Rx≤ c1

xT Rx < c2

x(0)

x(N f )

y(0)

y(N f )

z(0) z(N f )

Fig. 1. Ellipsoids bounding the trajectories of a system.

The concept of FTB, which extends the FTS to deal with
external disturbances, is formalized in Definition 2.

Definition 2. System (1) is finite time bounded with respect
to (c1,d,c2,R,N f ), with c2 > c1 ≥ 0, d ≥ 0, N f ∈ Z+ and
R� 0 if for any solution x of (2) in the time horizon 1 ≤
k ≤ N f one has that

xT (0)Rx(0)≤ c1 =⇒ xT (k)Rx(k)< c2,
∀k ∈ {1, . . . ,N f },
∀ω ∈Wd ,

where Wd = {ω(·) : Z+→R |ωT (k)ω(k)≤ d, k = 0, . . .N f }.
The presence of uncertainties in (1) can be modeled with

parametric uncertainties in the system matrices. In this case,
the system to be handled is given by

x(k+1) = A(α(k))x(k)+G(α(k))ω(k), (2)

where α(k) ∈ RN is a vector of uncertain parameters belong-
ing to the unit N-simplex

∆
N =

{
θ ∈RN :

N

∑
i=1

θi = 1, θi ≥ 0

}
.

The matrices A(α(k)) and G(α(k)) depends linearly on
the uncertainty α(k) = (α1(k), . . . ,αN(k)), viz.:

A(α(k)) =
N

∑
i=1

αi(k)Ai, G(α(k)) =
N

∑
i=1

αi(k)Gi,

where Ai,Bi, i = 1, . . . ,N are fixed, non-dependent of α(k),
known matrices called the vertices of A(α(k)) and B(α(k)),
respectively.

The concept of robust FTS and FTB is formalized next in
definitions 3 and 4.

Definition 3. System (2) with G= 0 is robustly FTS (RFTS)
with respect to (c1,c2,R,N f ), with c2 > c1 ≥ 0, N f ∈ Z+

and R � 0 if for any solution x of (2) in the time horizon
1≤ k ≤ N f one has that

xT (0)Rx(0)≤ c1 =⇒ xT (k)Rx(k)< c2,
∀k ∈ {1, . . . ,N f },
∀α(k) ∈ ∆N .

Definition 4. System (2) is robustly FTB (RFTB) with
respect to (c1,d,c2,R,N f ), with c2 > c1 ≥ 0, d ≥ 0, N f ∈Z+

and R � 0 if for any solution x of (2) in the time horizon
1≤ k ≤ N f one has that

xT (0)Rx(0)≤ c1 =⇒ xT (k)Rx(k)< c2,
∀k ∈ {1, . . . ,N f },
∀ω ∈Wd ,
∀α(k) ∈ ∆N .

where Wd = {ω(·) : Z+→R |ωT (k)ω(k)≤ d, k = 0, . . .N f }.

In particular, if d = 0, the external signal is identically
equal to zero and the RFTB notion of Definition 4 reduces
to the RFTS notion of Definition 3. It is also important to
remark that the definition of FTB used in this paper and in
[17] is different from the definition used in [23]. In [23],
only the initial condition of the external signal is assumed
to be bounded while in [17] and in this paper the noise is
assumed to be bounded during all the finite time horizon.
Although this is a more restrictive assumption, the dynamics
of the external signal in [23] is precisely known while in [17]
and in this paper no assumptions besides the boundedness is
done about the dynamics of the noise.

To derive a novel analysis condition for (2) be
RFTS/RFTB, Finsler’s lemma will be used. It is important
to remark that the version of Finsler’s lemma stated in this
work is from [21] and it is slight different from the statement
of the original lemma proved in [22].

Lemma 1 (Finsler’s lemma). [21], [22] Let x ∈ Rn, Q ∈ Sn

and B ∈ Rm×n such that rank(B) = r < n. Then the follow-
ing statements are equivalent:

1) xT Qx < 0 ∀x ∈ Rn such that x 6= 0 and Bx = 0,
2) ∃X ∈ Rn×m : Q+X B+BT X T ≺ 0.

The matrix X of the second statement of Lemma (1)
can be seen as a matrix Lagrange multiplier [21] taking into
account the linear constraint originating from Bx = 0. By
rewriting the system equation and a difference inequality
as item 1) of Lemma 1 it will be possible to derive an
analysis condition with a search space enlarged by the extra
variable X of item 2) of Lemma 1. This extra variable, as
will be shown in the numeric examples, will allow to obtain
less conservative LMI conditions even when dealing with
precisely known matrices.

Along Lemma 1, homogeneous polynomial relaxation [24]
and Pólya’s theorem version for homogeneous polynomial



matrices [25] will also be used to deal with parameter
dependent LMI (PD-LMI) that stems when treating the case
that there is uncertainty in the system matrices. To use
these relaxation techniques, the concept of a homogeneous
polynomially parameter-dependent (HPPD) matrix is briefly
reviewed first.

Definition 5. A matrix valued function M : ∆N → Rm×n is
homogeneous polynomially parameter-dependent (HPPD)
on α ∈ ∆N with degree g if it can be expressed as

M (α) = ∑
p∈Sg

α
p1
1 α

p2
2 · · ·α

pN
N Mp, (3)

with

Sg =

{
p = (p1, . . . , pN) : pi ∈ Z+, i = 1, . . . ,N;

N

∑
i=1

pi = g

}
.

The matrices Mp are called the matrices coefficients of
the monomials of M(α).

The importance of HPPD matrices follows from the work
presented in [26], where it is proved that if a generic LMI
dependent on a parameter on ∆N has a solution, then without
loss of generality, there will also exists a parameter depen-
dent solution which is a HPPD matrix. This motivates the
following procedure to convert a parameter dependent LMI
on parameter independent LMIs. By replacing the variables
of the PD-LMI by HPPD matrices and imposing the matrices
coefficients (that are all parameter independent) to be of the
same sign of the original PD-LMI, new parameter indepen-
dent LMIs can be obtained using the matrices coefficients
of the HPPD matrices. Those parameter independent LMIs
are such that their solution set is included in the original
PD-LMI.

It is important to note that it is not necessary that the
coefficients of a HPPD matrix defined on ∆N be negative
(resp. positive) for it to be negative (resp. positive). This
motivates the use of a matrix version of Pólya’s theorem [25]:
if an HPPD matrix F (α) is positive on ∆N , then there will
exist a scalar f sufficiently large such that all the coefficients
of the HPPD matrix

(α1 + · · ·+αN)
f F (α)

are also positive. This gives another relaxation procedure to
verify if a parameter dependent LMI is positive or negative,
that is, multiply the original PD-LMI by ∑

N
i=1 αi in order to

eventually obtain a HPPD matrix with positive coefficients.
For more details of these procedures the reader is referred
to [24].

It is important to remark that although these LMI relax-
ation procedures are systematic, they can turn very complex
as f and g increases. In spite of that, the specialized parser
ROLMIP1 can be used to automatically carry this relaxation
[27].

1Available for download at http://www.dt.fee.unicamp.br/
~agulhari/rolmip/rolmip.htm.

III. MAIN RESULTS

The following theorems state the proposed LMI conditions
based on Finsler’s lemma. In Theorem 1 are stated the con-
ditions for FTB and in Corollary 1 are stated the conditions
for FTS.

Theorem 1. System (2) is RFTB with respect to
(c1,d,c2,R,N f ) if there exist matrices P1 ∈ Sn

+, P2 ∈ Sr
+;

matrices valued functions X1(α) ∈ Rn×n, X2(α) ∈ Rn×n,
X3(α)∈Rr×n; and positive scalars λ1,λ2, λ3 and γ > 1 such
that for any α ∈ ∆NM11(α) M12(α) −X1(α)G(α)+XT

3 (α)
? M22(α) −X2(α)G(α)−AT (α)XT

3 (α)
? ? −γP2−He{X3(α)G(α)}

≺ 0,

M11(α) = P1 +He{X1(α)},
M12(α) =−X1(α)A(α)+XT

2 (α),
M22(α) =−γP1−He{X2(α)A(α)},

(4)
λ3R≺ P1 ≺ λ1R, (5)

P2 ≺ λ2Ir, (6)

λ1c1 +λ2d

(
1− 1

γ
Nf

)
(

1− 1
γ

) < λ3
c2

γ
N f

. (7)

Proof: Consider the Lyapunov function candidate given
by

V (x(k)) = xT (k)P1x(k) (8)

and define P̃1 = R−1/2P1R−1/2.
Proceeding as in [17, Lemma 3.2] one can show that if

the inequalities

V (x(k+1))< γV (x(k))+ γω
T (k)P2ω(k) (9)

and

λmax(P̃1)c1 +λmax(P2)d

(
1− 1

γ
Nf

)
(

1− 1
γ

) <
c2λmin(P̃1)

γ
N f

(10)

are satisfied, then the system (2) is RFTB with respect to
(c1,d,c2,R,N f ).

In fact, using Grönwall’s lemma one has that (9) implies
that

V (x(k)) ≤ γ
kV (x(0))+

k

∑
i=1

γ
i
ω

T (k− i)P2ω(k− i)

≤ γ
kxT (0)P1x(0)+λmax(P2)d

γk+1− γ

γ−1

≤ γ
k
λmax(P̃1)c1 +λmax(P2)d

γk+1− γ

γ−1

≤ γ
N

(
λmax(P̃1)c1 +λmax(P2)d

1− 1
γN

1− 1
γ

)
.

On the other hand, one has that

V (x(k))≥ λmin(P̃1)xT (k)Rx(k),



and thus

xT (k)Rx(k)<
γN

λmin(P̃1)

(
λmax(P̃1)c1 +λmax(P2)d

1− 1
γN

1− 1
γ

)
,

which with (10) implies that system (2) is RFTB with respect
to (c1,d,c2,R,N f ).

Using (8), we have that (9) can be written as x̄T Qx̄ < 0,
where

Q =

P1 0 0
? −γP1 0
? ? −γP2

 , x̄ =

x(k+1)
x(k)
ω(k)

 .
Defining

B(α) =
[
In −A(α) −G(α)

]
, X (α) =

X1(α)
X2(α)
X3(α)

 ,
Lemma 1 can be applied pointwise to each α ∈ ∆N to yield
(4).

Finally, by imposing conditions (5)-(7), one has that (10)
is satisfied.
A simple corollary that yields a sufficient condition to
analysis the RFTS of (2) is given next. Albeit being only
a sufficient condition, Corollary 1 gives a computationally
faster alternative to the DLMI [8] or singular value based
computations [23, Rem. 2].

Corollary 1. System (2) is RFTS with respect to
(c1,c2,R,N f ) if there exists P ∈ Sn

+; matrices valued func-
tions X1(α) ∈Rn×n, X2(α) ∈Rn×n; and positive scalars λ1,
λ3 and γ > 1 such that for any α ∈ ∆N[

P+He{X1(α)} −X1(α)A(α)+XT
2 (α)

? −γP−He{X2(α)A(α)}

]
≺ 0, (11)

λ3R≺ P≺ λ1R, (12)

λ1c1 < λ3
c2

γ
N f

. (13)

Proof: Similar to Theorem 1.
It is important to notice that both Theorem 1 and Corollary 1
lead to PD-LMI feasibility problems, that is LMIs that must
be satisfied for all parameters α ∈ ∆N . Although this is
a problem of infinite dimension in the parameter α , the
relaxation schemes of Section II can be used. By supposing
that the extra variables Xi(α), i = 1, . . . ,3 introduced by
Finsler’s lemma are HPPD matrices, it is possible to find
sufficient LMI conditions written only in terms of the vertices
of the matrices A and G and the coefficients of the HPPD
matrices Xi(α). As the level of relaxation increases, it is
possible to achieve less conservative sets of conditions.

Another important remark is that if the system matrices are
precisely known, the PD-LMIs relapses to LMIs again and
no conservatism is introduced by supposing that the matrices
valued functions Xi(α), i = 1, . . . ,3 are constant — which
corresponds to using a HPPD matrix with degree g = 0.

Besides the feasibility problems treated in Theorem 1 and
Corollary 1, it is also interesting to consider optimization
problems constrained to the conditions of Theorem 1 and

Corollary 1. For instance, one may be interested in comput-
ing the maximum d to analyze how far the system can reject
disturbances or computing the minimum c2 to analyze how
far the trajectories of the system can be restrained. Firstly,
we treat the problem of minimization of c2 in Theorem 2.

Theorem 2. For given g ∈ Z+ and λ̄3 > 0, let c∗2(g) be an
optimal solution of min c2 subject to (4)-(7) with λ3 = λ̄3 and
Xi(α), i = 1, . . . ,3 being HPPD matrices taking values on
α ∈ ∆N with degree g. Then one has that c∗2(g+1)≤ c∗2(g).

Proof: If there exists positive scalars λ1, λ2, λ̄3 and
γ > 1; positive definite matrices P1 ∈ Sn

+, P2 ∈ Sr
+; and HPPD

matrices X1(α) ∈ Rn×n, X2(α) ∈ Rn×n, X3(α) ∈ Rr×n with
degree g such that (4)-(7) hold, then, since α ∈ ∆N , the
following HPPD matrices with degree g+1(

N

∑
i=1

αi

)
X j(α), j = 1, . . . ,3,

and λ1,λ2, λ̄3, γ , P1, P2 are also a particular solution of (4)-
(7). Hence the minimization of c2 subject to (4)-(7) for g+1
produces at least the same optimal value obtained with g,
which implies that c2(g+1)≤ c2(g).
The problems of maximization of c1 and d are also similar
and it is treated next in Theorem 3.

Theorem 3. For given g∈Z+ and λ̄1, λ̄2 > 0, let c∗1(g) (resp.
d∗(g)) be an optimal solution of max c1 (resp. max d) subject
to (4)-(7) with λ1 = λ̄1 (resp. λ2 = λ̄2) and Xi(α), i= 1, . . . ,3
being HPPD matrices taking values on α ∈ ∆N with degree
g.

Then one has that c∗1(g+1)≥ c∗1(g) and that d∗(g+1)≥
d∗(g).

Proof: Similar to Theorem 2.
It should be noted that increasing the degree g of a HPPD
matrix in these relaxation scheme increases the number of
decision variables. By using Pólya’s relaxation mentioned
in Section II, however, it is possible to also decrease the
conservatism of the LMI conditions increasing the degree
of relaxation f without expanding the number of decision
variables (although there is a increase in the number of the
LMI scalar rows).

IV. NUMERICAL EXAMPLES

The numerical examples were performed using the SDP
solver SeDuMi [28] and the parsers YALMIP [29] and
ROLMIP [27] within MATLAB environment.

Example 1. To show that by using Finsler’s lemma alone,
without uncertainty parameters, the conservatism is de-
creased in comparison with the FTB analysis conditions of
[23] and [17] let consider precisely known matrices in this
example, that is, we consider that α = 1, N = 1 and A = A1.
The matrices of (2) are chosen as

A =

−1.20 −0.09 0.02
1.00 0.00 0.00
0.00 1.00 0.00

 ,



G =

1.0 0.0
0.0 1.0
0.5 0.5

 ,
and the FTB parameters to be considered are c1 = 1, c2 = 18,
d = 1.1, N f = 5 and R = I3.

To compare with the FTB analysis condition of [23], let
consider an external sinusoidal signal given by

ω(k+1) = Fω(k),

where
F =

[
0.8 0.6
−0.6 0.8

]
.

Since F has complex eigenvalues of unitary modulus, it is
easy to prove that ωT (0)ω(0) = ωT (k)ω(k)≤ d for all k =
1, . . . ,N f . Thus, ω belongs to the noise class that is tackled
in Definition 4.

Although using Lemma 3.2 from [17] with H = 0 and E1 =
0 and using Lemma 1 from [23] it is not possible to known
if the system is finite time bounded, the use of Theorem 1
assures the FTB of the system.

To graphically illustrate the FTB of the system, a time-
simulation of 100 random initial conditions whose norm is
less than or equal to c1 = 1 was performed and plotted in
Figure 2. As can be seen, every trajectory maintains its norm
below than c2 = 18 during the interval k = 1, . . . ,N f .

It can also be seen that the maximum norm obtained by the
trajectories of this time-simulation was approximately 83%
of c2, indicating the small conservatism of the proposed LMI
conditions.

1 2 3 4 5
0

5

10

15

Time

N
or

m

Fig. 2. Time simulation of system of Example 1.

Example 2. In this example, let consider that matrices A
and G are uncertain in order to compare the proposed FTB
analysis condition with the condition appeared in [17] for
uncertain linear systems.

To this end, consider the system

x(k+1) = (A+∆A)x(k)+Gω(k), (14)

where

A =

−1.00 0.01 0.01
1.00 0.00 0.00
0.00 1.00 0.00

 , G =

0
1
1


and ∆A is an unknown matrix representing parameters un-
certainties given by ∆A = HFE, where

E =
[
0.0 0.1 0.1

]
, H =

0.1
0.1
0.1


and F is an uncertain scalar satisfying −1≤ F ≤ 1. System
(14) can also be written in the polytopic form (2) taking
N = 2 and

A1 = A−HE1, A2 = A+HE1.

The goal is to find the minimum value of c2 that guarantees
that (14) is FTB for c1 = 0, d = 1, N f = 4 and R = I3. In this
framework both Lemma 3.2 from [17] and Theorem 2 was
applied in the search of c2. By using Lemma 3.2 from [17]
was not possible to find the minimum c2 that guarantees
that (14) is FTB. On the other hand, by using Theorem 2
with λ̄3 = 1, g = 2 and f = 1 it was possible to find that
for all c2 > 34.64 the system is guaranteed to be FTB, what
illustrates the effectiveness of the proposed method.

V. CONCLUSION

In this paper, a novel LMI-based condition for the FTS and
FTB analysis of a uncertain polytopic discrete-time system
was derived by the use of Finsler’s lemma. The numerical
examples show that the proposed analysis condition is less
conservative than others LMI based analysis conditions pre-
sented in the literature, even if the matrices of the system
are precisely known.

Although only analysis conditions are presented in this
paper, further work should be done to use these conditions
for controller and filter synthesis problems.
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