Errata for "Hybrid Kinematic Control for Rigid Body Pose Stabilization using Dual Quaternions"

In the proof of Lemma 2 it is said that the graph of the set-valued mapping \vec{G} is $\mathbb{R}^{8} \times \mathbb{R} \times \mathbb{R}^{8} \times\{-1,1\}$. This is not valid, as the graph is in fact
$\mathbb{R}^{8} \times \mathbb{R} \times\left\{x \in \mathbb{R}^{8}: x_{1}<0\right\} \times\{-1\} \cup \mathbb{R}^{8} \times \mathbb{R} \times\left\{x \in \mathbb{R}^{8}: x_{1}=0\right\} \times\{-1,1\} \cup \mathbb{R}^{8} \times \mathbb{R} \times\left\{x \in \mathbb{R}^{8}: x_{1}>0\right\} \times\{1\}$.
In the following we given an alternative proof that \vec{G} is outer semicontinuous.
Proof. It suffices to prove that each component of \vec{G} is outer semicontinuous. The map $(\mathbf{x}, y) \mapsto \mathbf{x}$ is a projection, thus it is continuous. The map $(\mathbf{x}, y) \mapsto \overline{\operatorname{sgn}}\left(x_{1}\right)$ is outer semicontinuous because its graph is

$$
\left\{(\mathbf{x}, y,-1) \in \mathbb{R}^{10}: x_{1} \leq 0\right\} \cup\left\{(\mathbf{x}, y, 1) \in \mathbb{R}^{10}: x_{1} \geq 0\right\},
$$

a closed subset of \mathbb{R}^{10}.

