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Abstract

In this paper, a new condition for finite time boundedness analysis is presented.

Firstly, a brief discussion of the available conditions found in the literature and

comparisons between them regarding computational efficiency and conservatism

are presented. Then, a new condition expressed in terms of linear matrix inequal-

ities (LMIs) is derived using the Finsler’s lemma. The proposed condition is

proved to be less conservative than LMI conditions previously presented in the

literature, and its efficiency is illustrated with numerical examples.
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1. Introduction

Most systems faced in engineering do not need to operate over a long period

of time, but only during a predetermined time period. This fact motivated, as early

as in the 1960 decade, the introduction of the nowadays well established concepts

of finite time boundedness and stability [1, 2, 3, 4, 5]. Formally, a time-varying
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linear system subject to a disturbance ω in a prespecified class W described by

ẋ(t) = A(t)x(t)+B(t)ω(t), ∀t ∈ [0,Tf ] (1)

is said to be finite time bounded (FTB) with respect to (c1,c2,Tf ,R,W ) with

c2 > c1 ≥ 0, Tf > 0 and R� 0 if

xT (0)Rx(0)< c1⇒ xT (t)Rx(t)< c2, ∀t ∈ [0,Tf ],∀w ∈W ,

that is, the system is FTB if for any initial condition x(0) in a given bounded re-

gion, it is guaranteed that for a certain time interval of lenght Tf , the state x(t) re-

mains in a (possibly larger) bounded region. Some disturbance sets W frequently

used in the literature are the class of square integrable disturbances [6, 7, 8]

W 2
d :=

{
ω (·)

∣∣∣∣∫ Tf

0
ω

T (τ)ω (τ)dτ ≤ d
}
,

and the class of worst case disturbances [9, 10, 11]

W ∞
d :=

{
ω (·)

∣∣ωT (t)ω (t)≤ d ∀t ∈
[
0,Tf

]}
.

In the particular case without disturbances (i.e. W = /0) or when the system

does not has inputs (i.e. B = 0), the definition of FTB reduces to the definition of

finite time stability (FTS).

The FTS and FTB characterization provides a good framework to analyze sys-

tem trajectories during transient time and to design control strategies able to avoid

excitation of nonlinear dynamics, such as saturation [12]. Systems whose state

trajectory are required to be constrained during a finite time horizon are suitable

to this formulation. Real word applications include ATM networks [13], car sus-

pension system [5], missile systems, chemical processes and airplane maneuvers

[3], among others.
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Although it may seem a slight modification of the corresponding infinite time

concepts, the characterization of time finiteness turns to be turns into a very dif-

ficult problem. In fact, only just recently a necessary and sufficient condition for

these properties was obtained in terms of differential matrix inequalities (DMI)

[14, 10, 6, 15, 16, 12, 17]. Among them, in [17] is given a necessary and sufficient

condition based on DMI for the system be FTS. Assuming zero initial conditions,

necessary and sufficient conditions in terms of an infinite number of linear DMIs

for the system be FTB with respect to the class of noise W 2
d2 are given in [10].

In the general case where the initial state of the system is non-zero, only a suffi-

cient DMI condition for FTB is presented. In [18] is presented a sufficient DMI

condition for the system be FTB with respect to the class of noise W ∞
d .

Except for small systems, the DMI characterization of finite time bounded-

ness or stability is computationally intractable. Following [19], the feasibility of

DMIs can be shown to be a NP-hard problem. In order to lessen the computational

burden, relaxations of these DMIs have been proposed, that although more con-

servative, are computationally tractable. An alternative necessary and sufficient

FTS condition based on the solution of a differential Lyapunov equation (DLE)

is proposed in [17]. For the general FTB case, sufficient conditions based only

on LMIs, which is a convex problem [20], have also been proposed in [9, 7, 21].

Other works worth mentioning in the FTB context are: [22] which deals with

H∞ control for norm bounded disturbances, [23] which deals with time-varying

bounded disturbances for discrete time systems and, [7] which also deals with

norm-bounded disturbance and whose Lyapunov function motivates the main the-

orem of this paper. For a more detailed discussion, see [24, 5].

In this paper, the goal is to provide a computationally tractable condition for
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FTB (in this sense better than DMI conditions) and also reduce the conservatism

of LMI conditions presented in the literature. For this end, it is proposed to apply

Finsler’s lemma [25] in order to get advantage of introduced extra variables.

This paper is organized as follows. A review of the main results on FTB and

FTS are presented in Section 2. A new LMI condition for FTB based on Finsler’s

lemma is derived in Section 3. Numerical examples are shown in Section 4 and

finally, the conclusion is presented in Section 5.

In the sequel, the following notation will be used: R is the set of real num-

bers, Rm×n the set of real matrices of order m× n, Sn the set of symmetric real

matrices of order n×n, Sn
+ the set of symmetric positive definite matrices of order

n×n. P� 0 indicates that P is a symmetric positive definite matrix. The symbol

? indicates symmetric terms in symmetric matrices. λmax(A) and λmin(A) are re-

spectively the maximum and the minimum eigenvalue of the symmetric matrix A.

AT is the transpose of matrix A. Im(A) and Ker(A) are respectively the image and

the kernel of the matrix A.

2. Preliminary results and problem statement

In [10], finite time boundedness property with respect to the class of noise

W 2
d2 for a system with zero initial state is given as the following necessary and

sufficient DMI conditions.

Lemma 1. System (1) with x(0) = 0 is FTB with respect to the parameters (c1,c2,

Tf ,R,W 2
d2) if and only if there exists a continuously differentiable piecewise func-

tion P : R→ Sn such that for each t ∈ [0,Tf ] one has that

Ṗ(τ)+AT (τ)P(τ)+P(τ)A(τ)+ γ̂P(τ)B(τ)BT (τ)P(τ)≺ 0, τ ∈ [0, t] , (2)
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P(t)� R,

P(0)≺ γ̂R,

where γ̂c2/(c1 +d).

Lemma 1 is very hard to be of practical use: firstly, the condition (2) requires

to check an infinite number of differential matrix inequalities (one for each t ∈

[0,Tf ]); secondly, the strong hypothesis of zero initial condition is required. Thus,

it is required a trade-off between the practical usefulness and the conservatism of

the FTB/FTS conditions. In fact, [6] and [18] are presented weaker conditions

in terms of one DMI for the FTB analysis of a system with possibly non-zero

initial state. These sufficient (but not necessary) DMI conditions are summarized

in the following Lemma 2. For the case of W = W 2
d , the condition was originally

presented in [6], and for the case of W = W ∞
d , in [18].

Lemma 2. System (1) is FTB with respect to the parameters (c1,c2,Tf ,R,W 2
d )

(or with respect to (c1,c2,Tf ,R,W ∞
d )) if there exists a continuously differentiable

piecewise function P : R→ Sn such that for each t ∈ [0,Tf ] one has that

Ṗ(t)+AT (t)P(t)+P(t)A(t)+ γ̂P(t)B(t)BT (t)P(t)≺ 0, (3)

P(t)� R, (4)

P(0)≺ γ̂R, (5)

where γ̂c2/(c1 +d) (or γ̂c2/(c1 +dTf ), respectively).

A sufficient condition for FTS can be derived as a special case of the FTB

condition of Lemma 2 when B = 0 and d = 0. It is important to note that this

analysis condition has also been shown to be necessary for finite time stability in

[17]. These results are summarized in Lemma 3.
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Lemma 3. System (1) is FTS with respect to the parameters (c1,c2,Tf ,R) if and

only if there exists a continuously differentiable piecewise function P : R→ Sn

such that for each t ∈ [0,Tf ] one has that

Ṗ(t)+AT (t)P(t)+P(t)A(t)≺ 0, (6)

P(t)� R, (7)

P(0)≺ c2

c1
R. (8)

Remark 4. It is interesting to observe that conditions (6) and (7) imply in the

conditions

Ṗ(t)+AT (t)P(t)+P(t)A(t)≺ 0, P(t)� 0, ∀t ∈
[
0,Tf

]
. (9)

Thus, at first glance, it seems that if system (1) is FTS then it is asymptotically

stable in the sense of Lyapunov. However, in general, this is not true. To see this,

consider for instance, the scalar system

ẋ(t) = 2tx(t), x(t0) = x0 (10)

with solution

x(t) = x0 et2−t2
0 .

Clearly, the equilibrium point in x = 0 is not asymptotically stable, thus there

is no P(t) satisfying (9) for all t ≥ 0. Nevertheless, considering P(t) = e−2t2−t/2,

one has that

Ṗ(t)+AT (t)P(t)+P(t)A(t)=−4te−2t2
− 1

2
+2(2t)

(
e−2t2

− t
2

)
=−2t2− 1

2
< 0

is satisfied for all t ≥ 0 and that besides P(t)> 0 not being satisfied for all t ≥ 0,

there exists a Tf such that it is satisfied for all t ∈ [0,Tf ). Furthermore, for the
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above P, P(0) = 1 and it is always possible to choose c1 ≥ 0, c2 > 0 and R � 0

such that (10) is FTS with respect to these parameters. �

In general, the conditions based on DMIs are not computationally tractable

and a discretization similar to [26], in the context of the bounded real lemma, or

to [15, 12], in the context of FTS/FTB, may be needed. According to [15, 12], the

DMIs in Lemma 2 and Lemma 3 can be computationally implemented by restrict-

ing the variable P(·) as affine piecewise functions. With this constraint, the DMIs

turn into several time dependent BMIs (or just LMIs in the case of merely FTS

verification). The larger the number of different time subintervals for P(·), the

larger the number of variables and BMI/LMI inequalities introduced in the condi-

tions, possibly decreasing the conservatism. However, it is important to note that

there is no numerical evidence or proof that if the number of different time subin-

tervals tends to infinity, then the BMI/LMIs stemmed from the affine piecewise

P(·) are equivalent to the original DMIs of Lemma 2 and Lemma 3. Furthermore,

one should note that BMIs problems are difficult to be handled computationally

due to its non-convex characteristic. It can be shown that even for small systems,

the available BMI solvers may not find a solution (see Example 17).

For FTS, an alternative criterion less computationally expensive than the above

DMIs and BMIs is given in [17]. This criterion is based on a differential Lyapunov

equation (DLE) and stated in Lemma 5.

Lemma 5. System (1) is FTS with respect to the parameters (c1,c2,Tf ,R) if and

only if the continuously differentiable piecewise solution P : R→ Sn of the DLE

given by

−Ṗ(t)+A(t)P(t)+P(t)AT (t) = 0,

P(0) = c1R−1
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is positive definite and satisfies

P(t)≺ c2R−1

for all t ∈ [0,Tf ].

Remark 6. If the system (1) is autonomous and time-invariant, the solution of the

DLE can be explicitly given by [27, p. 108]

P(t) = eAtP(0)eAT t = c1eAtR−1eAT t .

Thus, system (1) is FTS with respect to the parameters (c1,c2,Tf ,R) if and only if

the inequality

eAtR−1eAT t ≺ c2

c1
R−1 (11)

holds for each t ∈ [0,Tf ]. Furthermore, if the function

Γ(t) = eAtR−1eAT t− (c2/c1)R−1 (12)

is convex, then (11) only needs to be checked at t = Tf . Summing up, if (1) is

autonomous and time-invariant, a simple and sufficient criterion for a system to

be FTS can be derived. This criterion uses only the parameters of the problem

without any additional variable and it is given by

A2R−1 +R−1(AT )2 +2AR−1AT � 0,

eATf R−1eAT Tf ≺ c2

c1
R−1.

�

Besides necessary and sufficient conditions for FTB and FTS, a considerable

effort has been done in the literature to obtain computationally less expensive suf-

ficient conditions based on LMIs. To the best of the authors knowledge, the FTB

8



conditions of [9] for disturbance class W ∞
d and the conditions of [7] for distur-

bance class W 2
d represent the least conservative LMI conditions in the literature

for FTB analysis. The subsequent lemma encompasses both results.

Lemma 7. Given a fixed β > 0, system (1) is FTB with respect to (c1,c2,Tf ,R,W ∞
d )

(or with respect to (c1,c2,Tf ,R,W 2
d )) if there exist Q1 ∈ Sn

+, Q2 ∈ Sr
+, β̂ > 0 such

that for each t ∈ [0,Tf ] one has thatA(t) Q̃1 + Q̃1AT (t)−β Q̃1 B(t)Q2

? −β̂Q2

≺ 0, (13)

c1

λmin (Q1)
+

d
λmin (Q2)

<
c2e−βT

λmax (Q1)
, (14)

where

Q̃1 := R−
1
2 Q1R−

1
2 (15)

and β̂ = β (or β̂ = 1 respectively).

For the particular case of class W ∞
d , Lemma 7 is a slight generalization of the

original result of [9] where FTB was proved only for constant valued disturbances.

The proof of Lemma 7 follows similar steps of Lemma 1 presented in [28].

The FTB characterization for the two classes of disturbance are closely related.

For instance, when β = 1, both are equivalent. Another relation is given by the

following proposition.

Proposition 8. If a system is FTB with respect to W ∞
d by the conditions of Lemma 7

with 0 < β̂ = β < 1, then the system is also FTB with respect to W 2
d . On the other

hand, if the system is FTB with respect to W 2
d by the conditions of Lemma 7 with

β̂ = 1 and β > 1, then the system is also FTB with respect to W ∞
d .
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Proof. Since the proof of the first and second statements are similar, only the

proof of first one is presented. Let Q̃1, Q1, Q2 and 0 < β̂ = β < 1 be a particular

solution of (13)-(15). Using Schur’s complement arguments one has that (13) is

equivalent to

A(t) Q̃1 + Q̃1AT (t)−β Q̃1 ≺ 0, (16)

−βQ2−QT
2 BT (t)

(
A(t) Q̃1 + Q̃1AT (t)−β Q̃1

)−1
B(t)Q2 ≺ 0.

Since 0 < β < 1, it follows that βQ2 ≺ Q2 and

−QT
2 BT (t)

(
A(t) Q̃1 + Q̃1AT (t)−β Q̃1

)−1
B(t)Q2 ≺ Q2. (17)

Using Schur’s complement arguments, from (16) and (17) it follows that Q̃1,

Q1, Q2 and β are also a solution for (13) with β̂ = 1.

An analysis for the finite time stability of a system can be obtained as a par-

ticular case of Lemma 7 by using d = 0 and B = 0. The conditions are explicitly

stated in Corollary 9.

Corollary 9. Given a fixed β > 0, system (1) is FTS with respect to (c1,c2,Tf ,R)

if there exist Q̂1 ∈ Sn
+ such that for each t ∈ [0,Tf ] one has that

A(t) Q̃1 + Q̃1AT (t)−β Q̃1 ≺ 0, (18)

λmax

(
R

1
2 Q̃1R

1
2

)
λmin

(
R

1
2 Q̃1R

1
2

) <
c2

c1
e−βTf . (19)

Remark 10. Following [9], the inequalities (14) and (19) can be verified by appro-

priate LMIs. In fact, let λ1 > 0, λ2 > 0 and λ3 > 0 be scalar variables. In the FTB

case, the LMIs

λ1R≺ Q̃1 ≺ R,
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λ2I ≺ Q2 ≺ λ3I,
c2e−βTf

√
c1
√

d

? λ1 0

? ? λ2

� 0,

imply (14), and in the FTS case, the LMIs

λ1R≺ Q̃1 ≺ λ2R,

λ2 <
c2

c1
e−βTf λ1,

imply (19). �

In view of the discussion so far, the analysis problem to be dealt with can be

stated as follows.

Problem 11. Considering the trade-off between conservatism and numerical tractabil-

ity, find FTB/FTS conditions less conservative than the ones from Lemma 7 but

at same time less expensive computationally than the ones from Lemma 2.

In order to solve Problem 11, it is proposed to use the Finsler’s lemma [25] to

derive a new FTB/FTS analysis condition, which will be given in Theorem 13 of

Section 3.

Lemma 12 (Finsler’s lemma). [25, 29] Let x ∈ Rn, Q ∈ Sn and B ∈ Rm×n such

that rank(B) = r < n. Let B⊥ a matrix whose columns span a basis for Ker(B),

i.e. a matrix B⊥ ∈ Rn×(n−r) satisfying Im
(
B⊥
)
= Ker(B). The following are

equivalent:

1. xT Qx < 0 ∀x ∈ Rn such that x 6= 0 and Bx = 0.

2.
(
B⊥
)T

QB⊥ ≺ 0.
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3. ∃µ ∈ R : Q−µBT B ≺ 0.

4. ∃X ∈ Rn×m : Q+X B+BT X T ≺ 0.

The equivalence 1-4 of Lemma 12 allows the introduction of extra variables

in the analysis condition, enlarging the search space and possibly leading to less

conservative LMI conditions. In the context of Lyapunov asymptotic stability, this

approach is originally done in [29]. To the best of the authors knowledge, it is the

first time that this lemma is used in the context of finite time stability.

3. Main results

The following theorem presents LMI conditions for FTB that solves Prob-

lem 11.

Theorem 13. Given a fixed β > 0, system (1) is FTB with respect to
(
c1,c2,W

∞
d ,Tf ,R

)
(or with respect to

(
c1,c2,W

2
d ,Tf ,R

)
) if there exist matrices P1 ∈ Sn

+, P2 ∈ Sr
+;

matrices F (t) ∈ Rn×n, G(t) ∈ Rn×n, H (t) ∈ Rr×n; and a scalar β̂ > 0 such that
L11 P̃1−F (t)+AT (t)GT (t) F (t)B(t)+AT (t)HT (t)

? −G(t)−GT (t) G(t)B(t)−HT (t)

? ? −β̂P2 +H (t)B(t)+BT (t)HT (t)

≺ 0,

L11 =−β P̃1 +F (t)A(t)+AT (t)FT (t) ,

(20)

c1λmax (P1)+dλmax (P2)< c2e−βTf λmin (P1) , (21)

P̃1 = R1/2P1R1/2, (22)

and β̂ = β (or β̂ = 1, respectively).
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Proof. Consider the Lyapunov function candidate [7]

V (x) := xT Q̃−1
1 x. (23)

Proceeding similarly as in [7] one can show that if the inequalities

V̇ (x)< βV (x)+ β̂ω
T Q−1

2 ω, (24)

c1

λmin(Q1)
+

d
λmin(Q2)

<
c2eβTf

λmax(Q1)
(25)

are satisfied, then system (1) is FTB with respect to
(
c1,c2,W

∞
d ,Tf ,R

)
(or with

respect to
(
c1,c2,W

2
d ,Tf ,R

)
), if β̂ = β (or β̂ = 1, respectively). By defining

P̃1 = Q̃−1
1 and P2 = Q−1

2 , one has that (21) is equivalent to (25).

Now in order to use the Finsler’s lemma, rewrite (24) as

[
xT (t) ẋT (t) ωT (t)

]
−β P̃1 P̃1 0

P̃1 0 0

0 0 −β̂P2




x(t)

ẋ(t)

ω (t)

< 0. (26)

By using the equivalence 1-4 of Lemma 12 in (26) with

x←


x(t)

ẋ(t)

ω (t)

 , Q←

−β P̃1 P̃1 0

P̃1 0 0

0 0 −β̂P2

 ,BT ←


AT

−I

BT

 , X =


F

G

H


the inequality (20) follows immediately.

When d = 0 and B = 0, one can use H = 0 in Theorem 13 to turn the FTB

analysis condition into a FTS analysis condition. This is stated in the next corol-

lary.
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Corollary 14. Given a fixed β > 0, system (1) is FTS with respect to
(
c1,c2,Tf ,R

)
if there exist matrix P1 ∈ Sn

+ and matrices F (t) ∈ Rn×n, G(t) ∈ Rn×n such that−β P̃1 +F (t)A(t)+AT (t)FT (t) P̃1−F (t)+AT (t)GT (t)

? −G(t)−GT (t)

≺ 0, (27)

λmax

(
R−

1
2 P̃1R−

1
2

)
λmin

(
R−

1
2 P̃1R−

1
2

) <
c2

c1
e−βTf . (28)

Remark 15. Similar to Remark 10, inequalities (21) and (28) can be guaranteed

by appropriate LMIs. Let `1, `2, `3 > 0 be scalar variables. In the FTB case, the

LMIs

`3R≺ P̃1 ≺ `1R,

c1`1 +d`2 < c2e−βTf `3,

P2 ≺ `2I,

imply (21), and in the particular case of FTS,

`3R≺ P̃1 ≺ `1R,

`1 <
c2

c1
e−βTf `3,

imply (28). �

In the next proposition, it is shown that the FTB characterization of Theo-

rem 13 are in the worst case as stringent as the characterization of Lemma 7

which, to the best of the authors knowledge are the current less conservative LMI

condition for FTB in the literature. However, it is important to note that the com-

putational properties are different. In fact, in Example 17 it is shown a system for

which the LMIs of Theorem 13 are feasible but the LMIs of Lemma 7 are not.
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Proposition 16. For any fixed ε > 0, if P1, P2, F = P̃1, G = εI and H = 0 satisfy

the conditions of Theorem 13, then Q1 = P−1
1 and Q2 = P−1

2 satisfy the conditions

of Lemma 7.

Proof. Let ε > 0. Choosing F = P̃1, G = εI and H = 0 in Theorem 13 we have

that LMI (20) becomes
−β P̃1 + P̃1A(t)+AT (t) P̃1 εAT (t) P̃1B(t)

? −2εI εB(t)

? ? −β̂P2

≺ 0. (29)

In view of this, there is a sufficiently small ε such that−β P̃1 + P̃1A(t)+AT (t) P̃1 P̃1B(t)

? −β̂P2

≺ 0, (30)

which is equivalent to LMI (13) from Lemma 7.

Multiplying (29) from the left and right by
I 0 0

0 0 I

0 I 0

 ,
one has that 

−β P̃1 + P̃1A(t)+AT (t) P̃1 P̃1B(t) εAT (t)

? −βP2 εBT (t)

? ? −2εI

≺ 0. (31)

By Schur’s complement arguments, (31) is equivalent to−β P̃1 + P̃1A(t)+AT (t) P̃1 P̃1B(t)

? −βP2

≺−1
2

ε

AT (t)

BT (t)

[A(t) B(t)
]
� 0,
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from which follows the result.

Finally, replacing P̃1 = Q̃−1
1 and P2 = Q−1

2 in (30) and multiplying to the left

and to the right by Q̃1 0

0 Q2

 ,
one has that (30) is equivalent to (13).

Finally, the computational complexity of the LMI-based and BMI-based al-

gorithms, in terms of scalar variables and rows, are summarized in Table 1. The

unique features of each method for FTB analysis are highlighted in Table 2.

Conditions for FTB1 Number of rows Number of scalar variables

Lemma 2 (4M+1)n — 2

Lemma 7 3n+3r+1 1
2(n

2 + r2 +n+ r)+3

Theorem 13 4n+3r+1 5
2n2 +nr+ 1

2r2 + 1
2(n+ r)+3

Conditions for FTS

Corollary 3 5Mn Mn(n+1)

Corollary 9 3n+2 n(n+1)
2 +2

Corollary 14 4n+2 n(n+1)
2 +2n2 +3

Table 1: Computational complexity of each condition in terms of number of rows and scalar

variables. The number M denotes the level of discretization of the DMI of Lemma 2.

1The number of rows and scalar variables are counted after applying Remark 10 (respectively

Remark 15) to relax Lemma 7 and Corollary 9 (respectively Theorem 13 and Corollary 14) to LMI

conditions.
2Since the discretization of Lemma 2 yields in general a BMI problem, the number of scalar

variables is not directly comparable to the number of scalar variables of a LMI problem.
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Condition type Advantages and disadvantages

Lemma 2 BMI The conservatism may be decreased with

the increase of the level of discretization.

BMI is a non-convex optimization problem.

Lemma 7 LMI Use less variables and rows than Theorem 13.

It may be more conservative than Theorem 13.

Theorem 13 LMI Use more variables and rows than Lemma 7.

It may be less conservative than Lemma 7.

Table 2: Unique features of each approach for FTB analysis.

4. Numerical examples

In this section some examples comparing the current best FTB/FTS conditions

and the proposed conditions are presented.

In the first example, the FTB conditions are compared.

Example 17. Consider the system (1) with matrices given by

A =


0 1 0

−2 −1 0

0 1 1

 , B =


0

1

1


and with finite time parameters given by c1 = 1, c2 = 6, W = W ∞

d with d = 1,

R = I, β = 22 and Tf = 0.1s. It is important to mention that this system is asymp-

totically unstable in infinite time horizon.

By using the parser YALMIP3 [30] within Matlab environment, it is possible

to easily implement the LMI conditions of Lemma 7 or Theorem 13 in the solver

3Available to download at http://users.isy.liu.se/johanl/yalmip/.
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FTB conditions Number of rows Number of scalar variables

Lemma 2 12M+3 —

Lemma 7 13 10

Theorem 13 16 31

Table 3: Computational burden of each FTB condition in Example 17.

SeDuMi4 [31], or the DMI conditions of Lemma 2 (after replacing P(·) by affine

piecewise functions) in the BMI solver PENLAB5 [32].

On one hand, the LMI-based conditions uses 10 scalar variables and 13 LMI

rows for Lemma 7 and 31 scalar variables and 16 LMI rows for Theorem 13.

Although the LMI of Lemma 7 is infeasible, the LMI of Theorem 13 assures that

the system is FTB with respect to the given finite time parameters.

On the other hand, the DMI-based Lemma 2 needs Mn(n+1) scalar variables

and (4M + 1)n rows, where M is the number of different patches used for the

variable P(·). Even using a big number for M , the solver PENLAB could not find

a feasible function to the BMI feasibility problem and consequently, it was not

possible to guarantee that the system is FTB. The computational burden of each

method is summarized in Table 3.

Further, in order to graphically illustrate the finite time boundedness, a time-

simulation was performed considering 100 random initial conditions whose norm

is less than or equal to c1 = 1. Considering the set of all trajectories x(t) stemmed

from these initial conditions, the maximum xT (t)x(t) at each t is shown in Fig-

ure 1. As can be seen, every trajectory maintains its norm below c2 = 6 during the

4Available to download at http://sedumi.ie.lehigh.edu/.
5Available to download at http://web.mat.bham.ac.uk/kocvara/penlab/.
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prescribed time interval of t ∈ [0,0.1].

In the next example, FTS conditions are compared.

Time (s)

m
ax

xT (
t)

x(
t)

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10.9

1

1.1

1.2

1.3

1.4

1.5

Figure 1: Time simulation of system of Example 17.

Example 18. Consider the system (1) with

A =


0 −1 0

1 0 0

1 0 0

 ,
B = 0 and R = I. Since this case deals with only the finite time stability (and not

finite time boundedness) of an autonomous system, it is possible to use Lemma 5

and Remark 6. Note, however, that the function (12) for this choice of A and R

is not convex, thus the verification of Γ(t) only at t = Tf is not sufficient. In fact,

one can check that Γ(t) is not negative definite for 2.57≤ t < 3.72, besides being

negative definite for 3.72 ≤ t ≤ 8. Thus, the testing of the finite time stability of
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the system for T = 8 checking the negative definiteness of Γ(t) only at points

t 6∈ [2.57,3,72] leads to a wrong conclusion about the finite time stability of the

system.

Even so, since the implementation of Corollaries 3, 9 and 14 using LMIs leads

to only sufficient conditions, those also can not be used to conclude that the system

is not FTS and the only way to assure this conclusion is by sufficiently discretizing

the interval [0,Tf ] when using Lemma 5.

In the next, FTB conditions are applied in a practical system.

Example 19. Following Section 2.5 of [5], we apply the proposed technique to

analyze the finite time boundedness of a vehicle active suspension system in order

to prevent excessive suspension bottoming. The model of the suspension system,

illustrated in Figure 2, is

ẋ =


0 1 0 −1

− Ks
Ms
− Bs

Ms
0 Bs

Ms

0 0 0 1
Ks
Mu

Bs
Mu

− Ku
Mu
− Bs

Mu

x+


0

0

−1

0

ω,

where the state variables are given by x1 = xs−xu (the suspension stroke), x2 = ẋs,

x3 = xu− xo (the tire deflection) and x4 = ẋu. The parameters Ms and Mu are

respectively the sprung and the unsprung mass, Ku is the tire stiffness and (Ks,Bs)

consist of the passive suspension [33]. The values of the model parameters are [5]

Ms = 320kg, Ks = 50
kN
m

, Bs = 2000
N s
m

,

Ku = 200
kN
m

, Mu = 40kg, umax = 100kN

and the FTB parameters are c1 = 1, c2 = 6, d = 1, Tf = 0.2 and R = I.
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Ms

Bs Ks

Mu

Ku

xo

xu

xs

Figure 2: Vehicle active suspension system.

Although it was not possible to guarantee the finite time boundedness of the

car suspension system using Lemma 7 or Lemma 2, the use of Theorem 13 with

β = 0.3 yields the conclusion that the system is FTB.

5. Conclusion

In this paper, the problem of finite time boundedness was investigated. A

review of the FTB and FTS analysis conditions using DMI, BMI, DLE or LMI

was done, presenting some propositions and examples that helps to compare those

analysis conditions. By using the Finsler’s lemma, it was possible to derive a new

condition based on LMIs for a system to be FTB. This condition was shown to

be less conservative than other LMI conditions in the literature. Further works

should investigate the synthesis of FTS and FTB controllers and filters using the

proposed conditions. Additionally, possible extensions of the current results for

systems with time-delays, as done in [34], might also be investigated.
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