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Unscented Kalman Filters for Riemannian
State-Space Systems

Henrique M. T. Menegaz, João Y. Ishihara, Hugo T. M. Kussaba

Abstract—Unscented Kalman Filters (UKFs) have become
popular in the research community. Most UKFs work only with
Euclidean systems, but in many scenarios it is advantageous
to consider systems with state-variables taking values on Rie-
mannian manifolds. However, we can still find some gaps in the
literature’s theory of UKFs for Riemannian systems: for instance,
the literature has not yet i) developed Riemannian extensions of
some fundamental concepts of the UKF theory (e.g., extensions
of σ-representation, Unscented Transformation, Additive UKF,
Augmented UKF, additive-noise system), ii) proofs of some steps
in their UKFs for Riemannian systems (e.g., proof of sigma points
parameterization by vectors, state correction equations, noise
statistics inclusion), and iii) relations between their UKFs for
Riemannian systems. In this work, we attempt to develop a theory
capable of filling these gaps. Among other results, we propose
Riemannian extensions of the main concepts in the UKF theory
(including closed forms), justify all steps of the proposed UKFs,
and provide a framework able to relate UKFs for particular
manifolds among themselves and with UKFs for Euclidean
spaces. Compared with UKFs for Riemannian manifolds of the
literature, the proposed filters are more consistent, formally-
principled, and general. An example of satellite attitude tracking
illustrates the proposed theory.

I. INTRODUCTION

When we want to know the value of some variables of
a given system–e.g., the position and velocity of a car, the
position and attitude of a satellite, the temperature of a boil,
etc.—we can acquire data from the system and develop a
mathematical model of it. But measurements are noisy, and
models are always imperfect. Hence, to estimate the desired
variables, we often must use filters, such as Unscented Kalman
Filters (UKFs). Researchers have been applying UKFs in
applications of diverse fields: for example, in power electronic
[1], aerospace [2], and automotive [3] systems. These filters’
success is partially explained by their good trade-off between
estimation quality and computational complexity compared
with similar techniques such as the Extended Kalman Filter
(EKF) [4].

Most UKFs work only with Euclidean models (the so-called
state-space systems; cf. Section IV), but sometimes modeling
with Riemannian manifolds is better. These manifolds can
i) model more systems (cf. Section I-A), ii) provide better
mathematical properties than Euclidean subspaces (e.g., better
metrics), and iii) be the set where measurements take value
from (cf. [5]–[7] and Section I-A).
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Although some works have introduced UKFs for Rieman-
nian systems (e.g., [5], [8]–[10]; cf. Section I-A), we can
still find some gaps in the literature’s theory for these UKFs.
First, fundamental UKF concepts still miss for Riemannian
manifolds, such as σ-representation (σR), Unscented Transfor-
mation (UT), Additive UKF, Augmented UKF, additive-noise
system, among others (cf. [11]). Second, some steps in UKFs
for Riemannian manifolds are not formally justified, such as
when a UKF parameterize sigma points by vectors, or correct
the predicted state estimate, or consider noise statistics (cf.
[5], [12], [13]; see Sections I-A and VII-D). Third, we do not
know how the literature’s consistent UKFs for Riemannian
manifolds relates among themselves—do they follow from a
same general Riemannian UKF?—or with UKFs for Euclidean
Spaces—are these particular cases of those?

In this work, by continuing the research of [5], we aim
to develop a formalized and systematized theory for UKFs
on Riemannian manifolds. Among other results, this theory
introduces Riemannian extensions of the main concepts in the
UKF theory (including closed forms), justifies all steps of the
proposed UKFs, and provides a framework able to relate UKFs
for particular manifolds among themselves and with UKFs for
Euclidean spaces.

A. Kalman filtering in Riemannian manifolds

Riemannian manifolds can model many applications; far
more than Euclidean spaces. For instance, we find i) special
orthogonal groups, special Euclidean groups, unit spheres
(including the set of unit quaternions), and the study quadric
(the set of unit dual-quaternions) applied to many robotics
applications [14]–[18], aerospace systems [12], [17]–[20], bio-
engineering [8], [21], among others; ii) positive symmetric
matrices applied to applications in image recognition, image
registration, image tracking, and surgery [21]; iii) Grassmann
and Stiefel manifolds applied to information theory [22],
machine learning [23], visual recognition [23], [24], com-
munication systems [25], and geology [26]; and iv) other
Riemannian manifolds applied to quantum systems [27], and
special and general relativity [28].

Some works in the literature have proposed KFs for par-
ticular Riemannian systems: the works [9], [29]–[31] and
[12] (among others) introduced EKFs and UKFs for unit
quaternions; and [10], [32] and [33] EKFs for special orthog-
onal groups. Other works have proposed KFs for classes of
Riemannian systems: the works [34], [35] and [36] introduced
EKFs for Lie groups; and [5] a UKF for geodesically-complete
Riemannian manifolds.geodesically-complete
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Developing UKFs for Riemannian manifolds is difficult
because, in general, Riemannian manifolds lack some math-
ematical tools used in most UKFs, such as multiplication
and addition (cf. UKFs in [11], [37], [38]). An alternative
is to use properties of an embedding Euclidean space and
afterwards perform operations to return to the working man-
ifold. For instance, an application on S3 can use derivatives,
sums, multiplications, metrics of R4 and afterwards perform
a normalization. Many works take this embedding approach
[13], [39], [40].

However, this approach may i) lose the physical identifica-
tion (e.g., an addition of unit quaternions yields a non unit
quaternion, which does not represent a rotation anymore), or
ii) disregard the global properties of the manifold leading to
instability. To retain the estimates on the working manifolds,
literature UKFs use intrinsic manifold properties (cf. [34]–
[36])—meaning we do not use properties of embedding Eu-
clidean spaces.

In this work, we take this intrinsic approach; we combine
the UKF theory we developed in [11] with the statistics
for Riemannian manifolds of [41] and some results of [5]
to develop a theory of UKFs for any geodesically-complete
Riemannian manifolds.

II. RIEMANNIAN MANIFOLDS

In this section, we provide a general description of the
concepts from Riemannian Geometry used in this work and in
Appendix A their formal definitions. This exposition is mainly
based on [42], and partially on [7] and [6].

A differentiable manifold (Definition 5) N (or Nn) can be
viewed as a set whose subsets are identified through charts
(injective mappings) with subsets of the Rn. For every point
a on a differentiable manifold N , we can define the vector
space of tangent vectors at a called tangent space and denoted
by TaN (Definition 7).

A Riemannian manifold N (Definition 11) is a differentiable
manifold endowed with a Riemannian metric (Definition 11)
〈 , 〉 or g. For a ∈ N and v ∈ TaN , the norm of v associated
to a is defined by ‖v‖a := 〈v, v〉1/2a [7].

For two points a and b in N connected by a curve α : I→
N , the distance between a and b is defined by, for [a, b] ⊂ I,

dist (a, b) := min
α

Lba (α) ; α(a) = a, α(b) = b,

where Lba(α) is the arc length (Definition 8) of α in the interval
[a, b]. A geodesic ball of center a and radius r is the set defined
as

B(a, r) := {x ∈ N : dist(x,a) < r}.

Given a tangent vector v0 ∈ Tα(t0)N , t0 ∈ I, there exists
only one parallel vector field X (Definition 10) along α, such
that X (t0) = v0; X (t) is called the parallel transport of X (t0)
along α.

A curve α : I→ N is called a geodesic at t0 ∈ I if

D

dt

(
α′(t)

)
= 0

at t0, where D/dt(α′(t)) is the covariant derivative of α′(t)
(Theorem 4); if α is a geodesic at t, for all t ∈ I, we say

α is a geodesic [42]. If a curve minimizes the arc length
between two points of the manifold, then this curve is a
geodesic, but the converse is only valid locally. If the definition
domain of all geodesics of N can be extended to R, then
N is said to be geodesically-complete. There exists at least
one geodesic connecting every two points of a geodesically-
complete manifold.

Given a point a ∈ N , the exponential mapping (Definition
17), denoted by expa, associates a vector of TaN to a point of
N . Geometrically, expa(v) is a point of N obtained by going
out the length equal to ‖v‖, starting from a, along a geodesic
which passes through a with velocity equal to v/ ‖v‖.

Assuming a geodesically-complete manifold, it is possible
to follow the geodesic expa(tv) from t = 0 to t → ∞.
It may happen, however, that from a particular value tv to
t → ∞, the geodesics expa(tv) do not minimize the arc
length between a and expa(tv). In this case, the subset
{expa(tvv) : v ∈ TaN} ⊂ N is called the cut locus C(a)
and the inverse image C(a) := exp−1

a [C(a)] the tangential
cut locus [7]. The injectivity radius of N is defined as
inj(N ) := infp∈N dist(p, C(p)).

For every a ∈ N , we can reduce the domain of expa
to some subsets such that expa is a diffeomorphism. The
maximal of these subsets is called the maximal definition
domain Ω(a) ⊂ TaN ; this set is bounded by C(a) [7].
The inverse mapping of expa is the (Riemannian) logarithm
mapping (Definition 17) and we denote it by either loga b or−→
ba.

III. INTRINSIC STATISTICS ON RIEMANNIAN MANIFOLDS

UKFs are based on information of moments of random
vectors and of sample moments of weighted sets. To define
UKFs on Riemannian manifolds, we need extensions of these
concepts.

A. Statistics of random points

Riemannian extensions of random vectors are called (Rie-
mannian) random points [7]; the set of all random points
taking values on a Riemannian manifold N is denoted by
ΦN . Given a random point X ∈ ΦN , its probability density
function (pdf) is denoted by pX , and for a real-valued function
F : N → R the expected value of F relative to X is defined
by

EX {F (X)} :=

∫
N
F (b)pX(b)dN (b). (1)

For functions taking values on manifolds, we cannot define the
expected value as in (1); thus, we define mean points following
the Karcher expectation: they are the local minima of variances
[7].

Given a point c ∈ N , the variance σ2
X(c) is defined by

σ2
X(c) := EX{dist2(c,X)}. If σ2

X(c) is finite for every point
c ∈ N , then a point X̄ ∈ N is an expected point or mean of
X if

X̄ = arg min
c∈N

σ2
X(c). (2)
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The set of all means of X is denoted by E(X). A random
point can have more than one mean1.

Let X ∈ ΦN be a random point with a mean X̄ ∈ E(X),
and consider a point a ∈ N . If X̄ ∈ Ω(a), then the jth
(central) moment of X with respect to X̄ at a is defined by,
for even j,

Ma,j

X,X̄
:= EX

{[(−−→
aX −

−−→
aX̄

)
(�)T

]⊗ j2}
; (3)

and for odd j,

Ma,j

X,X̄
:= EX

{[(−−→
aX −

−−→
aX̄

)
(�)T

]⊗ j−1
2 ⊗

(−−→
aX −

−−→
aX̄

)}
.

We define joint pdf [denoted by pXY (x,y)], joint
expected moment (EXY {f(x,y)}) and cross-covariance
(P abXY ,(X̄,Ȳ )) of two random points X and Y similarly (cf.
[38]). The notation X ∼ (X̄,Ma,2

X,X̄
, ...,Ma,l

X,X̄
)N stands

for a Riemannian random point X ∈ ΦN with mean X̄ ∈
E(X) and moments Ma,2

X,X̄
, ...,Ma,l

X,X̄
. The second moment

(j = 2) is called covariance and denoted by P aXX,X̄ :=

Ma,j

X,X̄
. If E(X) = {X̄}, we can write Ma,j

X := Ma,j

X,X̄

and P aXX := P aXX,X̄ , or even M j
X := M X̄,j

X,X̄
and

PXX := P X̄XX,X̄ .
We represent statistics of Euclidean manifolds without bold

notation. For X ∈ ΦRn , X is symmetric if pX(X̄ + x) =

pX(X̄ − x) for every x ∈ Rn. If X has a mean, then

X̄ = arg min
c∈Rn

σ2
X(c) = EX{X};

and, for j even,

M j
X := EX{[(

−−→
X̄X−

−−→
X̄X̄)(�)T ]⊗

j
2 } = EX{[(X−X̄)(�)T ]⊗

j
2 }

(similarly for j odd and for sample cross-covariances).

B. Statistics of weighted sets

For a Riemannian manifold N and the natural numbers l ≥
2 and N ≥ 1, consider the weighted set

χ :=
{
χi, w

m
i , w

c,j
i , wcc,ji : χi ∈ N ;

j = 1, ..., l; wmi , w
c,j
i , wcc,ji ∈ R

}N
i=1

.

The weights wmi are associated (below) with the definition of
sample mean, wc,ji with the jth sample moment, and wcci with
the jth sample cross-moment of χ.

The sample variance of χ with respect to a point c ∈ N
is defined by s2

χ(c) :=
∑N
i=1 w

m
i dist2(c,χi). If the variance

s2
χ(c) is finite for every point c ∈ N , then a sample expected

point or sample mean of χ is defined by

µχ := arg min
c∈N

s2
χ(c). (4)

The set of all sample means of χ is represented by E (χ). An
weighted set in the form of χ can have more than one sample
mean.

1For a discussion about the existence and uniqueness of this expectation,
cf. Section 4.2 of [7].

For a point a ∈ N , if µχ,χ1,χ2, ...,χN ∈ N −C(a), then
the jth sample moment of χ with respect to X̄ at a is defined
by, for j even,

Ma,j
χ,µχ

:=

N∑
i=1

wc,ji

[(−−→aχi −−−→aµχ)(�)T ]⊗ j2 ; (5)

and for j odd,

Ma,j
χ,µχ

:=

N∑
i=1

wc,ji

[(−−→aχi−−−→aµχ)(�)T ]⊗ j−1
2 ⊗

(−−→aχi−−−→aµχ).
The sample moment (j = 2) is called sample covariance
and denoted by Σaχχ,µχ := Ma,2

χ,µχ
. If E (χ) = {µχ}, we

can write Ma,j
χ := Ma,j

χ,µχ
and Σaχχ := Σaχχ,µχ ; or even,

Mj
χ := Mµχ,j

χ,µχand Σχχ := Σ
µχ
χχ,µχ .

In addition, for i) the Riemannian manifold R, ii) a function
f : N → R, iii) the weighted set

γ :=
{
γi, w

m
i , w

c,j
i , wcc,ji : γi = f(χi); j = 1, ..., l

}N
i=1

,

with a mean µγ , and iv) the point b ∈ R. If
µγ ,γ1,γ2, ...,γN ∈ R − C(b), then the jth cross-moment
of χ and γ with respect to (µχ,µγ) at (a, b) is defined by,
for j even,

Mj,ab
χγ,µχµγ

:=

N∑
i=1

wcc,ji

[(−−→aχi −−−→aµχ)(−−→aγi −−−→aµγ)T )]⊗ j2 ;

and for j odd,

Mj,ab
χγ,µχµγ

:=

N∑
i=1

wcc,ji

[(−−→aχi −−−→aµχ)
×
(−−→aγi −−−→aµγ)T )]⊗ j−1

2 ⊗
(−−→aχi −−−→aµχ).

The second sample cross-moment (j = 2) is called sample
cross-covariance and denoted by Σabχγ,µχµγ := Mj,ab

χγ,µχµγ
.

If E (χ) = {µχ} and E (γ) = {µγ}, we can write Mj,ab
χγ :=

Mj,ab
χγ,µχµγ

and Σabχγ := Σabχγ,µχµγ ; or even, if Mj
χγ :=

Mj,µχµγ
χγ and Σχγ := Σ

µχµγ
χγ .

We represent Euclidean sets sample statistics without bold
notation. For a set χ with points χi ∈ Rn, we have

µχ = arg min
c∈Rn

s2
χ(c) =

n∑
i=1

wmi χi;

and, for j even, Mj
χ =

∑N
i=1 w

c,j
i [(χi − µχ)(�)T ]⊗

j
2 (simi-

larly for j odd and for sample cross-moments).

IV. UNSCENTED KALMAN FILTERS

There are two main concepts required to define UKFs,
namely: σRs and UTs [11]. Broadly, i) a σR is a set of
weighted points (the sigma points) approximating a random
vector, and ii) a UT is a function mapping two functionally
related random vectors to two sets that approximate their joint
pdf.

For the natural numbers l ≥ 2 and N ≥ 1, consider i)
a function f : Rn → Rη; ii) the random vectors X ∼
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(X̄,M2
X , ...,M

l
X)Rn and Y := f(X) ∼ (Ȳ ,M2

Y , ...,M
l
Y )Rη ;

and iii) the sets2

χ :=
{
χi, w

m
i , w

c,j
i , wcc,ji : χi ∈ Rn;

j = 1, ..., l; wmi , w
c,j
i , wcc,ji ∈ R

}N
i=1

; and

γ :=
{
γi, w

m
i , w

c,j
i , wcc,ji : γi = f(χi); j = 1, ..., l

}N
i=1

.

Definition 1 (σR. Definition 1 of [11]). The set χ is an lth
order N points σR(lthNσR) of X if, for every j = 1, . . . , l:

wmi 6= 0, wc,ji 6= 0, wcc,ji 6= 0, i = 1, . . . , N ; (6)
µχ = X̄; (7)

Mj
χ = M j

X . (8)

Definition 2 (UT. Definition 2 of [11]). If µχ = X̄ andMj
χ =

M j
X for every j = 2, . . . , l; then the lth order UT (lUT) is

defined by

lUT :
(
f, X̄,M2

X , ...,M
l
X

)
7→(

µγ ,M2
γ , ...,M

l
γ ,M

2
χγ , ...,M

l
χγ

)
.

χ is called the independent set of an lUT, and γ its dependent
set.

Every lthNσR is an independent set of an lUT. When
calling an lthNσR of X or an lUT, the reference to the lth
order can be omitted if l = 2. Also, the reference to N point
and/or to X can be omitted in case they are obvious from the
context or irrelevant to a discussion.

We can apply UTs in KF prediction-correction frameworks
to form UKFs. UKFs estimate the state of systems described
either in the additive form

xk = fk (xk−1) +$k, yk = hk (xk) + ϑk; (9)

or, more generally, in the form

xk = fk (xk−1, $k) , yk = hk (xk, ϑk) , (10)

where k is the time step; xk ∈ Φnx is the internal state; yk ∈
Φny is the measured output; and $k ∈ Φn$ and ϑk ∈ Φnϑ

are the process and measurement noises respectively; the noise
terms $k and ϑk are assumed to be uncorrelated.

In [11], we developed consistent UKFs for these systems:
the the Additive UKF (AdUKF, Algorithm 6 of [38]; see also
[11]) for (9); and the Augmented UKF (AuUKF, Algorithm
7 of [38]; see also [11]) for (10). But how could we develop
similar UKFs when xk, yk, $k and ϑk are Riemannian random
points? In the next section, we begin a theory towards this goal.

2Compared with [11], here we consider simpler sets. With this considera-
tion, we have a clearer text and do not lose generality for the results relative
to the UKFs.

V. RIEMANNIAN σ-REPRESENTATIONS

In this section, first, we define Riemannian σ-
representations (RiσR). They extend σRs to Riemannian
manifolds: σRs approximate random vectors, and RiσRs
approximate Riemannian random points. Then, we show a
way of extending closed forms of σRs to RiσRs. Afterwards,
we introduce results relative to the minimum number of sigma
points of an RiσR. At last, we introduce some particular
forms of RiσRs.

For now on, we make the following assumptions—we
explain their implications in Section VII-C—:

1) all Riemannian manifolds are geodesically-complete;
2) all Riemannian exponential mappings are defined with

their domain allowing them to realize diffeomorphisms;
3) every set of weighted points belonging to a Riemannian

manifold admits one, and only one, Riemannian sample
mean.

For the point a ∈ N and the natural numbers l ≥
2 and N ≥ 1, consider i) a random point X ∼
(X̄,Ma,2

X,X̄
, ...,Ma,l

X,X̄
)Nn and ii) a weighted set χ :=

{χi, wmi , w
c,j
i , wcc,ji |χi ∈ N}Ni=1 with sample mean µχ and

sample moments Mj
χ, j = 2, ..., l.

Definition 3 (RiσR. Definition 9.1 of [38]). The set χ is a
Riemannian lth order N points σ-representation (RilthNσR)
of X if, for every j = 1, . . . , l:

wmi 6= 0, wc,ji 6= 0, wcc,ji 6= 0, i = 1, . . . , N ; (11)
µχ = X̄; (12)

Mj
χ = M j

X , j = 2, 3, . . . , l; (13)

Moreover, assume χ is an RilthNσR of X , then:
• χ is normalized if, for every j = 1, 2, . . . , l:

N∑
i=1

wmi =

N∑
i=1

wc,ji =

N∑
i=1

wcc,ji = 1.

• χ is homogeneous if, for every j = 1, 2, . . . , l, the following
equations are satisfied: for N odd and every i = 1, ..., N−1:

wm1 = wmi , w
c,j
1 = wc,ji , wcc,j1 = wcc,ji ; (14)

or, for N even and every i = 1, ..., N :

wm1 = wmi , w
c,j
1 = wc,ji , wcc,j1 = wcc,ji . (15)

• χ is symmetric (with respect to χN , without loss of gener-
ality) if

−−−→µχχi −
−−−−→µχχN = −

(−−−−−−−−→µχχi+int(N2 ) −
−−−−→µχχN

)
,

wmi = wm
i+int(N2 ), w

c,j
i = wc,j

i+int(N2 )
, wcc,ji = wcc,j

i+int(N2 )
,

(16)

for every j = 1, 2, . . . , l and i = 1, ..., int(N/2), where
int(N/2) stands for greatest integer less than or equal to
N/2.

When calling an RilthNσR of X , the reference to the lth
order can be omitted if l = 2. Also, the reference to N points
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or to X can be omitted if they are obvious from the context
or irrelevant to a discussion.

RilthNσRs are generalizations of lthNσRs; every lthNσR
with an RilthNσR, and every RilthNσR with Euclidean points
is an lthNσR. This follows directly from the last paragraph
of Sections III-A and of III-B.

Finding closed forms for RiσRs may be troublesome, but the
next theorem provides a way of obtaining them from closed
forms of σRs—the reader will find several closed forms of
σRs in [11], [37], [38].

Theorem 1 (Theorem 9.1 of [38]). Suppose that, for every
i = 1, . . . , N ,

1) wmi > 0,
2) Ω(X̄) is convex, and
3) χi ∈ B(X̄, r) ∩ C(X̄)

where 0 < r ≤ 1
2 min{inj(N ), π/

√
κ) and κ is an upper

bound of the sectional curvatures of N . Then χ is a normal-
ized RilthNσR of X if, and only if,

χ :=
(

logX̄ χi, w
m
i , w

c,j
i , wcc,ji

)N
i=1

is a normalized lthNσR of the random vector

X ∼
(
[0]n×1,M

2
X , . . . ,M

l
X

)
TX̄N

.

Moreover, the following statements are true:
1) χ is homogeneous if, and only if, χ is homogeneous;
2) χ is symmetric if, and only if, χ is symmetric.

The proof of Theorem 1 is given in Appendix B; for
conditions to assure the convexity of Ω(X̄), see [43] and
references therein.

With this theorem, we can extend some results from
lthNσRs to RilthNσRs, such as the minimum number of
sigma points of an RilthNσR.

Corollary 1 (Corollary 9.1 of [38]). Let i) χ be a normalized
RilthNσR of X with wmi > 0 for every i = 1, . . . , N ; and ii)
the rank of the covariance PXX be r ≤ n. Then the following
statements are true:

1) N ≥ r + 1. If N = r + 1, then χ is called a minimum
RilthNσR of X .

2) If χ is symmetric, then N ≥ 2r. If χ is symmetric
and N = 2r, then χ is called a minimum symmetric
RilthNσR of X .

Moreover, consider the set χ :=
{−−→
X̄χi, w

m
i , w

c,j
i , wcc,ji

}N
i=1

and the random vector X ∼
(
[0]n×1,PXX

)
TX̄N

. Then the
following statements are true:
• If χ is a (normalized) homogeneous minimum symmetric
σR of X (HoMiSyσR, Corollary 3 of [11]), then χ is
also minimum and symmetric and is called a Rieman-
nian (normalized) homogeneous minimum symmetric σ
-representation of X .

• If χ is a Rho Minimum σR of X (“it is described in
the 6th row of Table I of [11] and refereed there as the
“Minimum set of [12]“), then χ is also minimum, and
is called a Riemannian Rho Minimum σ -representation
(RiRhoMiσR) of X .

• If χ is a Minimum σR of X (Theorem 3 of [11]), then χ
is also minimum, and is called a Riemannian Minimum
σ-representation (RiMiσR) of X .

The proof of Corollary 1 is given in Appendix C.
With Theorem 1 and Corollary 1, we can find an RiσR

(wmi > 0 for every i = 1, . . . , N ) by first finding a normalized
σR in the tangent space of the considered manifold; each
normalized σRs (cf. [11] and [38]) have their associated RiσRs
(cf. Corollary 1). For instance, suppose we want to calculate
the normalized RiMiσR of X ∈ ΦN (Corollary 1); that is,
we want3

χ = {χi, wi}
nx+1
i=1 = RiMiσR

(
x̂k−1|k−1, P̂

k−1|k−1

xx

)
.

We can compute the MiσR (Theorem 3 of [11])

χ =
{
χi, wi

}nx+1

i=1
:= MiσR

(
[0]nx×1, P̂

k−1|k−1

xx

)
,

and then, from Theorem 1, we would have

χ =
{

expx̂k−1|k−1
χi, wi

}nx+1

i=1
.

The work [5] introduced this technique [cf. (11) to (17)
therein], and here, with Theorem 1 and Corollary 1, we provide
its formal justification and required assumptions.

VI. RIEMANNIAN UNSCENTED TRANSFORMATIONS

Essentially, a UT is an approximation of the joint pdf of two
functionally-related random vectors by two weighted sets. For
a Riemannian extension of the UT, we develop likewise.

For the natural numbers l ≥ 2 and N ≥ 1, con-
sider i) a function f : N → R, ii) the random
points X ∼ (X̄,M2

X , ...,M
l
X)Nn and Y := f(X) ∼

(Ȳ ,M2
Y , ...,M

l
Y )Rη , and iii) the sets

χ :=
{
χi, w

m
i , w

c,j
i , wcc,ji : χi ∈ N ;

j = 1, ..., l; wmi , w
c,j
i , wcc,ji 6= 0

}N
i=1

and

γ :=
{
γi, w

m
i , w

c,j
i , wcc,ji : γi = f(χi); j = 1, ..., l

}N
i=1

.

Definition 4 (RilUT; Definition of 9.2 [38]). If µχ = X̄

and Mj
χ = M j

X for every j = 2, . . . , l; then the lth order
Riemannian Unscented Transformation (RilUT) is defined by

RilUT :
(
f, X̄,M2

X , ...,M
l
X

)
7→

(µγ ,M2
γ , ...,M

l
γ ,M

2
χγ , ...,M

l
χγ).

χ is called the independent set of RilUT, and γ its dependent
set.

Every RilthNσR is an independent set of an RilUT. If l =
2 or l is irrelevant for a given discussion, we can omit the
reference to l and write RiUT := Ri2UT.

RilUTs are generalizations of lUTs; every lUT is an RilUT,
and every RilUT with Euclidean points is an lUT. This follows
directly from the last paragraph of Sections III-A and of III-B.

3For a set ξ := {ξi, w
m,j
i , wc,j

i , wcc,j
i }, if wm,j

i = wc,j
i = wcc,j

i for
every j = 1, ...,l; then we write wi := wm,j

i and {ξi, wi} = ξ.
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An RilUT can be viewed as a mapping from 2 random
points X ∈ ΦN and Y := f(X) to two Riemannian sets
χ and γ acting as a discrete approximation of the joint
pdf of (X,Y ). For instance, an Ri2UT can be viewed as
the following approximation (this interpretation is inspired on
[44])(

X
Y

)
≈
(
X̃

Ỹ

)
∼
((

µχ
µγ

)
,

(
Σχχ Σχγ
ΣT
χγ Σγγ

))
.

VII. RIEMANNIAN UNSCENTED KALMAN FILTERS

At this point, we still need to develop i) Riemannian sys-
tems; and ii) state correction equations. First, UKFs estimate
systems with random vectors [cf. (9) and (10)]; thus, for Rie-
mannian UKFs (RiUKFs), we define systems with Riemannian
random points (Section VII-A). Second, three steps compose
UKFs: 1) state prediction, 2) measurement prediction, and 3)
state correction (cf. [11] and [38]). The Riemannian extensions
of steps 1) and 2) are trivial: since UTs compose steps 1 and
2, we extend them with RiUTs. But we still must extend step 3
(Section VII-B). In possession of these two results, we define
RiUKFs and provide a list of some particular forms (Section
VII-C).

A. Riemannian Dynamics Systems

Up to this point, we have focused on results regarding points
on manifolds. In this section, we focus on results for dynamic
state-space systems on Riemannian manifolds.

The Riemannian (stochastic discrete-time dynamic) system
in its general form is given by the following pair of equations:

xk = fk (xk−1,$k) , yk = hk (xk,ϑk) (17)

where k is the time step; xk ∈ ΦNnxx the internal state; yk ∈
ΦNnyy is the measured output;$k ∈ ΦNn$$ the process noise;
and ϑk ∈ ΦNnϑϑ

the measurement noise. The noises $k and
ϑk are uncorrelated, $k has mean $̄k and covariance Qk,
and ϑk mean ϑ̄k and covariance Rk.

We also want to consider an additive variant of (17) because
filters for this class of systems are computationally cheaper.
This additive variant of (17) would have i) $k acting on
fk(xk−1) by “adding” its mean to the mean of fk(xk−1) and
its covariance to the covariance of fk(xk−1), and ii) ϑk acting
similarly on hk(xk). We can work with sums in tangent spaces
using the following proposition.

Proposition 1 (Proposition 8.2 of [38]). Consider a Rieman-
nian point X ∼ (X̄,PXX)Nn and a random vector p ∼
(p̄, Ppp)TāNn . If Ω(X̄) is convex, and p̄ ∈ B(X̄, r) ∩ C(X̄)
where 0 < r ≤ 1

2 min{inj(N ), π/
√
κ) and κ is an upper

bound of the sectional curvatures of N ; then

expX̄
[−−→
X̄X + p

]
∼
(

expX̄ p̄,PXX + Ppp
)
Nx
. (18)

The proof of Proposition 1 is in Appendix D.
Consider this proposition twice: one for the process function

with a = fk(xk−1) and p = $k , and the other for the
measurement function with a = hk(xk) and p = ϑk. Using
this reasoning, we define the additive Riemannian (stochastic

discrete-time dynamic) system as follows {equation (9.20) of
[38]}:

xk = exp
fk

(
xk−1

) [log
fk

(
xk−1

) fk(xk−1

)
+$k

]
yk = exp

hk

(
xk

) [log
hk

(
xk

) hk(xk)+ ϑk

]
; (19)

where xk ∈ ΦNnxx , yk ∈ ΦNnyy , $k ∈ Tfk(xk−1)Nnx
x ,

and ϑk ∈ Tfk(xk−1)N
ny
y . The noise $k has mean $̄k ∈

Tfk(xk−1)Nnx
x and covariance Qk ∈ Tfk(xk−1)Nnx

x ×
Tfk(xk−1)Nnx

x , and ϑk mean ϑ̄k ∈ Tfk(xk−1)N
ny
y and co-

variance Rk ∈ Tfk(xk−1)N
ny
y × Tfk(xk−1)N

ny
y . Note that

$k is defined in the tangent space Tfk(xk−1)Nnx
x and ϑk in

Tfk(xk−1)N
ny
y . In Remark 1, we discuss an alternative defini-

tion in which these noises belong to Riemannian manifolds.
An example with the unit sphere manifold of dimension 3, S3,
is provided in Section VIII.

To the best of our knowledge, (19) is the first consistent
additive-noise Riemannian system. Although the literature
has introduced additive-noise discrete-time UKFs for some
Riemannian manifolds, we could not find any additive-noise
system retaining the random point in the working manifolds;
even for simple manifolds such as S3 (cf. [12], [39], [45]).

If Nnx
x = Rnx and Nny

y = Rny then (19) is the additive
system (9). This is a direct consequence of the following
results: for a, b ∈ Rn loga b = b− a and expab = b+ a.

Sometimes, only one of the two equations in (17) can be
written with additive-noise as in (19). In this case, we define
the following two partially-additive Riemannian systems:

xk = fk (xk−1,$k)

yk = exp
hk

(
xk

) [log
hk

(
xk

) hk(xk)+ ϑk

]
; (20)

and

xk = exp
fk

(
xk−1

) [log
fk

(
xk−1

) fk(xk−1

)
+$k

]
yk = hk (xk,ϑk) . (21)

Remark 1. System (19) is defined with tangent space process
and measurement noises. An alternative definition in which
these noises belong to Riemannian manifolds is the following:

xk = exp
fk(xk−1)

[
log

fk(xk−1)
fk (xk−1) + log

fk(xk−1)
$k

]
yk = exp

hk(xk)

[
log

hk(xk)
hk (xk) + log

hk(xk)
ϑk

]
;

where xk ∈ ΦNnxx , yk ∈ ΦNnyy , $k ∈ ΦNnxx , and ϑk ∈
ΦNnyy . In this case, it would be interesting to assume one of
the following two cases:

1) That are known i) the means of $k and ϑk—e.g., $̄k ∈
Nnx
x − C(fk (xk−1)) and ϑ̄k ∈ N

ny
y − C(hk (xk))—, b)

the covariance of $k with respect to $̄k at fk (xk−1),
and iii) the covariance of ϑk with respect to ϑ̄k at
hk (xk).

2) That the means and covariances of log
fk(xk−1)

$k

and log
hk(xk)

ϑk are known—e.g., the means $̄k ∈
T
fk(xk−1)

ΦNnxx and r̄k ∈ T
hk(xk)

ΦNnyy ; and the co-
variances Qk ∈ T

fk(xk−1)
ΦNnxx × Tfk(xk−1)

ΦNnxx and
Rk ∈ Thk(xk)

ΦNnxx × Thk(xk)
ΦNnyy .
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B. Correction equations

In this section, we introduce Riemannian extensions of
the UKFs correction equations. Finding these extensions is
not trivial because their Euclidean versions include vector
operations (cf. [11]), which are not defined for all Riemannian
manifolds. Thus, we proceed by first considering the simpler
case ΦNnxx = ΦNnyy .

1) State and measurement in the same manifold: Suppose
that Nnx

x = Nny
y and the measurements y̆1, ..., y̆k have been

acquired. Define the following random points4

xk|k−1 := xk|y̆1:k−1

xk|k := xk|y̆1:k

yk|k−1 := yk|y̆1:k−1,

and the following projections on the tangent space of xk|k−1

xTMk|k−1 := logx̄k|k−1
xk|k−1 (22)

xTMk|k := logx̄k|k−1
xk|k

yTMk|k−1 := logx̄k|k−1
yk|k−1 (23)

y̆TMk := logx̄k|k−1
y̆k. (24)

Let i) xk|k−1 and yk|k−1 be characterized by their projection
on the tangent space of xk|k−1 according to the following
equation:[

xTMk|k−1 yTMk|k−1

]T ∼

N

[ [0]nx,1
yTMk|k−1

]
,

 P k|k−1
xx P k|k−1

xy(
P k|k−1
xy

)T
P k|k−1
yy

 ; (25)

and ii) the projection xTMk|k be given by the following linear
correction of xTMk|k−1

xTMk|k = xTMk|k−1 +Gk

(
y̆TMk − yTMk|k−1

)
, (26)

where Gk ∈ Rnx×nx is a gain matrix. From known results of
the Kalman filtering theory (cf. [46]), we have

Gk := P k|k−1
xy

(
P k|k−1
yy

)−1

, (27)

and xTMk|k ∼ N(x̄TMk|k ,P
k|k−1,x̄k|k−1
xx ) where

x̄TMk|k := Gk

(
y̆TMk − ȳTMk|k−1

)
(28)

P
k|k,x̄k|k−1
xx := P k|k−1

xx − (Gk)P k|k−1
yy (Gk)

T
. (29)

From (22), we have

x̄k|k = expx̄k|k−1
xTMk|k . (30)

The matrix P
k|k−1,x̄k|k−1
xx is the covariance of xk|k relative

to x̄k|k at x̄k|k−1. We want the covariance P k|k
xx := P

k|k,x̄k|k
xx

of xk|k at x̄k|k, and the following theorem from [5] provides
the mechanism to obtain P

k|k,x̄k|k
xx from P

k|k,x̄k|k−1
xx .

4For the random points X and Y and the outcomes Y̆ 1, ..., Y̆ l of Y ; the
random point X |Y̆ 1:k−1 stands for X conditioned to Y i = Y̆ i for every
i = 1,..., l.

Theorem 2 (Parallel Transport of a Bilinear Mapping [5]). Let
P be a symmetric bilinear mapping on the tangent space TaN
of the Riemannian manifold N at a ∈ N , and α : [0, 1] →
N a differentiable curve on N with α(0) = a. Since P is
symmetric, it can be written as

P =

n∑
i=1

λiviv
T
i

where (v1, ..., vn) is an orthonormal basis of TaN , and each
λi is the eigenvalue of P associated with the eigenvector vi.
Let vi(t) be the parallel transport of vi along α(t) (Definition
15). With this,

Pt :=

n∑
i=1

λivi(t)vi(t)
T (31)

is the parallel transport of P along α(t).

When we do not know the closed form of a tangent vector
parallel transport, we can use a numerical approach such as
the Schild’s Ladder (cf. [5]; see [47] for other implementations
and algorithms of parallel transports).

We obtain P k|k
xx by performing the parallel transport of

P
k|k,x̄k|k
xx from x̄k|k−1 to x̄k|k as follows:

P k|k
xx = PT

(
P
k|k,x̄k|k
xx , x̄k|k−1, x̄k|k

)
, (32)

where

PT : Sym (TaN )×N ×N → Sym (TbN )

(Pa,a, b) 7→ P b

is the function mapping Sym(TaN )×N ×N to Sym(TbN )
according to (31), and Sym(TaN ) denotes the space of
symmetric matrices of TaN .

With this, we can define a UKF for Riemannian systems
when Nnx

x = Nny
y . Let us now consider the original more

general case.
2) State and measurement in different manifolds: If xk

belongs to a manifold ΦNnxx and yk to another manifold
ΦNnyy , then we can not define yTMk|k−1 as in (23) and y̆TMk
as in (24); consequently, neither xTMk|k as in (26).

Since we know the correction equations when Nnx
x = Nny

y ,
we can look for a manifold of which both Nx and Ny are
submanifolds. The simplest of such a class is Nx ×Ny—the
Cartesian product of two Riemannian manifolds is a Rieman-
nian manifold [42].

Suppose xTMk|k−1 and yTMk|k−1 are jointly Gaussian random
vectors according to (25). Define i) the Riemannian Manifold
Nx,y := Nx × Ny; ii) the points c := (cx, cy) ∈ Nx,y ,
bx ∈ Nx, and by ∈ Ny (these points are chosen); and the
following random vector belonging to TcNx,y:

x
TcNx,y
k|k,∗∗ := logc

[
xk|k−1, by

]T
+Gk,∗∗

(
logc[bx, y̆k]T − logc[bx,yk|k−1]T

)
where Gk,∗∗ ∈ R(nx+ny)×(nx+ny) is a gain matrix. The
tangent vector xTcNx,yk|k,∗∗ is clearly related with xTMk|k by

xTMk|k :=
[
x̂
TcNx,y
k|k,∗∗

]
1:nx,1

. (33)
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By finding the mean and covariance of xTcNx,yk|k,∗∗ , we find the
mean and covariance of xTMk|k .

Since xTMk|k−1 and yTMk|k−1 are jointly Gaussian random vec-
tors, it follows that—we use the same reasoning used to obtain
(27), (28), (29), (30), and (32)—

P k|k−1
xx,∗∗ := E

{(
logc

[
x
by

]
− logc

[
x̄k|k−1

by

])
(�)T

}
P k|k−1
yy,∗∗ := E

{(
logc

[
bx
y

]
− logc

[
bx

ȳk|k−1

])
(�)T

}

P k|k−1
xy,∗∗ := E

{(
logc

[
x
by

]
− logc

[
x̄k|k−1

by

])
×
(

logc

[
bx
y

]
− logc

[
bx

ȳk|k−1

])T}
;

thus, the mean and covariance of xTcNx,yk|k,∗∗ are given by

Gk,∗∗ :=P k|k−1
xy,∗∗diag

(
[0]nx×nx ,

E{(logcy y − logcy ȳk|k−1) (�)T }−1
)

(34)

x̄
TcNx,y
k|k,∗∗ := logc

[
x̄k|k−1

by

]
+Gk,∗∗ logc

[
bx

ȳk|k−1

]
(35)

P k|k,TcM
xx,∗∗ :=P k|k−1

xx,∗∗ − (Gk,∗∗)P
k|k−1
yy,∗∗ (Gk,∗∗)

T
. (36)

We can choose c, bx and by arbitrarily, and a particular choice
yields the desired correction equations.

Theorem 3 (Theorem 9.3 of [38]). Given (33), (34), (35), and
(36); if cx = bx = x̂k|k−1 and cy = by = ŷk|k−1, then

xTMk|k = Gk logŷk|k−1
(yk) (37)

and

P
k|k,x̄k|k−1
xx = P̂

k|k−1

xx −Gk

(
P̂
k|k−1

yy

)−1

(Gk)
T
, (38)

where
Gk := P k|k−1

xy

(
P k|k−1
yy

)−1

.

The proof of Theorem 3 is in Appendix E.
According to this theorem, the correction equations—(27),

(28), (29), (30), and (32)—are true even when the state and
the measurement belong to different manifolds. Therefore, we
do not have to perform calculations on the bigger manifold
Nx,y to calculate xTMk|k and P

k|k,x̄k|k−1
xx . Instead, they can be

calculated by (37) and (38) even when Nx 6= Ny .

C. New Riemannian Unscented Kalman Filters

At this point, we are endowed with the necessary results
to provide Riemannian extensions of UKFs. At every step
time, the final estimates x̂k|k and P̂

k|k
xx can be calculated by

(32) and Theorem 3. From (27), (32), (37), and (38) these
final estimates require x̂k|k−1, P̂

k|k−1

xx , ŷk|k−1, P̂
k|k−1

yy , and

P̂
k|k−1

xy . These last estimates can be calculated by realizing
RiUTs in systems (17) and (19). For instance, from (19),

Definition 4 and Proposition 1, the estimates x̂k|k−1, P̂
k|k−1

xx

can be calculated by(
ŷ∗k|k−1, P̂

k|k−1

yy,∗ , P̂
k|k−1

xy

)
:=

RiUT2

(
hk, x̂k|k−1, P̂

k|k−1

xx

)
ŷk|k−1 := expŷ∗

k|k−1
ϑ̄k

P̂
k|k−1

yy := P̂
k|k−1

yy,∗ +Rk.

By similar formulas, we can obtain x̂k|k−1, P̂
k|k−1

xx , ŷk|k−1,

P̂
k|k−1

yy , and P̂
k|k−1

xy for both (17) and (19).
Below, we introduce the Riemannian UKFs (RiUKFs):

UKFs for the Riemannian systems (17) and (19). For the filter
of (17), define the augmented functions

faugk

(
[xk−1, $k]T

)
:= fk

(
xk−1,$k

)
(39)

haugk

(
[xk, ϑk]T

)
:= hk

(
xk,ϑk

)
.

Consider system (17) and suppose that i) the initial state
is x0 ∼

(
x̄0,P

0
xx

)
Nx

, and ii) the measurements y̆1, y̆2, ...,
y̆kf are given. Then the Riemannian Augmented Unscented
Kalman Filter (RiAuUKF) is given by the following algorithm:

Algorithm 1 (RiAuUKF; Algorithm 19 of [38]). Set the initial
estimates x̂0|0 := x̄0 and P̂

0|0
xx := P 0

xx. For k = 1, ..., kf ,
perform the following steps:
1) State prediction.

x̂augk−1|k−1 :=
[
x̂Tk−1|k−1, $̄

T
k

]T
P̂
k−1|k−1

xx,aug := diag
(
P̂
k−1|k−1

xx ,Qk

)
(
x̂k|k−1, P̂

k|k−1

xx

)
:=

RiUT1

(
faugk , x̂augk−1|k−1, P̂

k−1|k−1

xx,aug

)
. (40)

2) Measurement prediction.

x̂augk|k−1 :=
[
x̂Tk|k−1, ϑ̄

T
k

]T
P̂
k|k−1

xx,aug := diag
(
P̂
k|k−1

xx ,Rk

)
.

(
ŷk|k−1, P̂

k|k−1

yy , P̂
k|k−1

xy,a

)
:=

RiUT2

(
haugk , x̂augk|k−1, P̂

k|k−1

xx,aug

)
(41)

P̂
k|k−1

xy :=
[
P̂
k|k−1

xy,aug

]
(1:nx),(1:ny)

.

3) State correction.

Gk := P̂
k|k−1

xy

(
P̂
k|k−1

yy

)−1

(42)

x̂TMk|k := Gk logŷk|k−1

(
y̆k
)

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
P̂
k|k,x̂k|k−1

xx := P̂
k|k−1

xx −GkP̂
k|k−1

yy GT
k
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P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1

xx , x̂k|k−1, x̂k|k

)
.

Consider the system (19) and suppose that i) the initial state
is x0 ∼

(
x̄0,P

0
xx

)
Nx

, and ii) the measurements y̆1, y̆2,
..., y̆kf are given. Then the Riemannian Additive Unscented
Kalman Filter (RiAdUKF) is given by the following algorithm:

Algorithm 2 (RiAdUKF; Algorithm 21 of [38]). Set the initial
estimates x̂0|0 := x̄0 and P̂

0|0
xx := P 0

xx. For k = 1, ..., kf ,
perform the following steps:
1) State prediction.(

x̂∗k|k−1, P̂
k|k−1

xx,∗

)
:= RiUT1

(
fk, x̂k−1|k−1, P̂

k−1|k−1

xx

)
(43)

x̂k|k−1 := expx̂∗
k|k−1

$̄k (44)

P̂
k|k−1

xx := P̂
k|k−1

xx,∗ +Qk. (45)

2) Measurement prediction.(
ŷ∗k|k−1, P̂

k|k−1

yy,∗ , P̂
k|k−1

xy

)
:=

RiUT2

(
hk, x̂k|k−1, P̂

k|k−1

xx

)
(46)

ŷk|k−1 := expŷ∗
k|k−1

ϑ̄k (47)

P̂
k|k−1

yy := P̂
k|k−1

yy,∗ +Rk. (48)

3) State correction.

Gk := P̂
k|k−1

xy

(
P̂
k|k−1

yy

)−1

(49)

x̂TMk|k := Gk logŷk|k−1

(
y̆k
)

(50)

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
(51)

P̂
k|k,x̂k|k−1

xx := P̂
k|k−1

xx −GkP̂
k|k−1

yy GT
k

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1

xx , x̂k|k−1, x̂k|k

)
. (52)

All steps of the RiUKFs are justified by and coherent with
the other results of this work. Among these, the most important
are σR, RiUT and Riemannian systems.

The notations RiUT1 and RiUT2 [in (40), (41), (43), and
(46)] indicate these RiUTs can have different forms. The
output of RiUT1 has only two terms—which is different from
the number of mapped variables in Definition 4—meaning that
only the first two variables of the output of Definition 4 are
needed.

We can consider not regenerating the independent set of
RiUT2 when RiUT1 = RiUT2. Let χk|k−1

∗ be the dependent
set of RiUT1 and χk|k−1

i the dependent set of RiUT2. Because,
from (41) and (46), χk|k−1

i,∗ and χk|k−1 are different objects,
we say χ

k|k−1
∗ is regenerated. Nonetheless, we could set

χ
k|k−1
i,∗ = χk|k−1; consequently, the computational effort of

the filter would decrease—calculating a new χk|k−1 can be
computationally because it includes calculating a square-root
matrix of P̂

k|k−1

xx,aug or P̂
k|k−1

xx . But in this case, i) the estima-
tion quality of the RiAdUKF would possibly deteriorate—it
has been shown for the Euclidean case (cf. Section 5.1 of
[38])—and ii) the reasoning behind the RiUKFs explained

in the second paragraph of this section would not be true
anymore.

After choosing the manifolds’ atlases, all expressions for the
Riemannian exponentials, logarithms, etc., must be coherent
with the chosen parameterizations. These transformations, as
well as other elements in these filters such as covariances,
have different expressions depending on the parameterizations
defining the manifolds.

We can find RiσRs (with wmi > 0 for every i = 1, . . . , N )
by first finding σRs in tangent spaces (see the last paragraph
of Section V). The independent sets of RiUT1 and RiUT2 can
be difficult to find. Fortunately, closed forms of RiσRs (which
can be independent sets of RiUTs) can be found from closed
forms of normalized σRs by using Theorem 1.

The method for obtaining the sample means of RiUT1 and
RiUT2 affects the computation efforts of the RiUKFs because,
following [7], we define these sample means as optimization
problems (Section III-B). Sometimes there exist closed forms,
but more often it requires optimization algorithms. The reader
will find efficient options in [6], [7], [48], [49] and in the
MATLAB and Python toolbox ManOpt [50]5.

Computational efforts of the RiUKFs also varies with the
underlying manifolds and their atlases because the expressions
for exponentials, logarithms and parallel transports change
with them. The reader can also refer to the ManOpt toolbox
for many efficient implementations of these operations.

Apart from these three factors, computational efforts ma-
jorly depends on the square-rooting involved in the RiσR
calculations and the P̂

k|k−1

yy inversion in the Kalman gain
calculations. Since we can find RiσRs by finding σRs in
tangent spaces and, to the best of our knowledge, all known
σRs require square-rooting a covariance matrix (cf. [11]),
the computational complexity of these operations in (40) is
O([nx +n$]3), in (41) O([ny +nϑ]3), in (43) is O(n3

x), and

in (46) O(n3
y). The computational complexity of the P̂

k|k−1

yy

inversion is O(n3
y) in both (42) and (49).

RiUKFs are generalizations of UKFs. Every UKF is a
RiUKF, and every RiUKF for Euclidean state-variables is a
UKF. It is easy to see that, if Nx and Ny are Euclidean spaces,
then RiAuUKF is equivalent to AuUKF (Algorithm 7 of [38]),
and RiAdUKF to AdUKF (Algorithm 6 of [38]).

Since Cartesian products of Riemannian manifolds are also
Riemannian manifolds (e.g., S3 × Rn) [42], the proposed
RiUKF also estimates systems with state variables belonging
to Cartesian products of Riemannian manifolds.

The Kalman gain Gk in (42) and (49) could be defined
in a more general way, as done in (34). However, it would
imply more computational effort—the dimension of the sigma
points and matrices would be higher—at the exchange of no
advantage, at least at present; perhaps benefits can be obtained
from (34) in future works.

The three assumptions cited at the beginning of Section V
impose some limitations on the RiUKFs. Assumption 1 limits
the RiUKFs to the case of geodesically-complete Riemannian
manifolds: still there are many of these manifolds useful for
practical applications, such as unit spheres, special orthogonal

5Available for download at https://www.manopt.org/.
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Table I
RIUKF VARIANTS FOR SOME RIσRS.

σR1 AuUKF1 AdUKF 1

RiMiσR RiMiAuUKF RiMiAdUKF
RiRhoMiσR RiRhoMiAuUKF RiRhoMiAdUKF
RiMiSyσR RiMiSyAuUKF RiMiSyAdUKF

RiHoMiSyσR RiHoMiSyAuUKF RiHoMiSyAdUKF
1Ad for Additive, Au for Augmented, Ho for Homogeneous, Mi for Minimum,
Ri stands for Riemannian, σR for σ-Representation, Sy for Symmetric, UKF
for Unscented Kalman Filter. Rho stand for Rho itself; see also the acronyms
list in Appendix F

groups, special Euclidean groups, real projective spaces, spe-
cial unitary groups, Grassmann manifolds, among others (cf.
[6] and Section I-A). Assumption 2 imposes careful choice of
P 0
xx, Qk, Rk (or Qk and Rk for the RiAdUKF): their values

should be consistent with the logarithms in their definitions [or
in (19) in the case of the RiAdUKF]; since these covariances
are tuning parameters and are often set based on intuition, an
user could chose inconsistent (too great) values; this would
probably result on either inconsistent sigma points—because
the tangent sigma points would be outside the tangent cut
locus—or on some divergence in the algorithm, such as non-
positive state covariance matrix. Assumption 3 will not, in
most cases, impose other limitations if the user model the
system equations and parameters consistently.

We can find particular cases of RiUKFs by choosing
particular forms of RiσRs; Table I shows some cases for
RiUT1 = RiUT2—the second and third columns contain the
filters. Each filter is the resulting variant of using i) the corre-
sponding RiUKF in the heading row of its column (RiAuUKF
or RiAdUKF), and ii) the corresponding RiσR written in the
first column of its row. For instance, the Riemannian Minimum
AuUKF (RiMiAuUKF in the first row and second column), is
the result of the RiAuUKF with the RiMiσR (Corollary 1).
All filters in Table I are new.

An RiUKF for the partially-additive system (20) is given by
step 1 of the RiAuUKF with steps 2 and 3 of the RiAdUKF,
and for (21) is given by step 1 of the RiAdUKF with steps 2
and 3 of the RiAuUKF.

For (19), (20) and (21) when either fk or hk are the identity
function, we can simplify their filters by skipping sigma points
calculations; hence saving computation effort. If, for example,
fk(x) = x, then the following two equations can replace the
state prediction (e.g., the step 1 of the RiAdUKF):

x̂k|k−1 := expx̂k−1|k−1
$̄k

P̂
k|k−1

xx := P̂
k−1|k−1

xx +Qk.

The case hk(x) = x is similar.

D. Relation with the literature
To the best of our knowledge, the UKF for Rieman-

nian manifolds (UKFRM) of [5] is the only UKF for any
geodesically-complete Riemannian manifold in the literature.
Consider system (17) and define the following functions—cf.
(1) and (2) of [5]—:

f∗k (xk−1) := fk(xk−1,$k−1), h∗k(xk) := hk(xk,ϑk).
(53)

Suppose that i) the initial state x0 is characterized by x0 ∼
(x̄0,P

0
xx)Nx , and ii) the measurements y̆1, y̆2, ..., y̆kf are

given. Let

HoMiSyσR : (X̄, PXX) 7→ {χi,, wi}Ni=1

be a function mapping the mean X̄ and covariance PXX of a
given random vector X to a HoMiSyσR (Corollary 3 of [11]).
Then the UKFRM of [5] is given by the following algorithm:

Algorithm 3 (UKFRM of [5]). Set N := 2nx + 1 and
the initial estimates x̂0|0 := x̄0 and P̂

0|0
xx := P 0

xx. For
k = 1, ..., kf , perform the following steps:

1) State prediction.{
χTMi,k−1|k−1, wi

}
N
i=1 := HoMiSyσR

(
[0]nx , P̂

k−1|k−1

xx

)
(54)

χ
k−1|k−1
i := expx̂k−1|k−1

(
χTMi,k−1|k−1

)
, i = 1, . . . , N

(55)

χ
k|k−1
i,∗ := f∗k

(
χ
k−1|k−1
i

)
, i = 1, . . . , N

x̂k|k−1 := arg min
a∈Nx

N∑
i=1

widist2
(
χ
k|k−1
i,∗ ,a

)
P̂
k|k−1

xx :=

N∑
i=1

wi

(
logx̂k|k−1

(
χ
k|k−1
i,∗

))(
�
)T
. (56)

2) Measurement prediction.{
χTMi,k|k−1, wi

}N
i=1

:= fkHoMiSyσR
(

[0]nx , P̂
k|k−1

xx

)
(57)

χ
k|k−1
i := expx̂k|k−1

(
χTMi,k|k−1

)
, i = 1, . . . , N (58)

γ
k|k−1
i := h∗k

(
χ
k|k−1
i

)
, i = 1, . . . , N

ŷk|k−1 := arg min
b∈Ny

N∑
i=1

widist2
(
γ
k|k−1
i , b

)
P̂
k|k−1

yy :=

N∑
i=1

wi

(
logŷk|k−1

(
γ
k|k−1
i

))(
�
)T

(59)

P̂
k|k−1

xy :=

N∑
i=1

wi

(
logx̂k|k−1

(
χ
k|k−1
i

))
(

logŷk|k−1

(
γ
k|k−1
i

))T
.

3) State correction.

Gk := P̂
k|k−1

xy

(
P̂
k|k−1

yy

)−1

x̂TMk|k := x̂TMk|k−1 +G logŷk|k−1

(
y̆k
)

(60)

x̂k|k := expx̂k|k−1

(
x̂TMk|k

)
P̂
k|k,x̂k|k−1

xx := P̂
k|k−1

xx −GkP̂
k|k−1

yy GT
k

P̂
k|k
xx := PT

(
P̂
k|k,x̂k|k−1

xx , x̂k|k−1, x̂k|k

)
.

Compared with the UKFRM of [5], we can point out the
following five improvements of the RiUKFs:
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1) The noises are incorporated into the RiUKFs, but in the
UKFRM they are not. In the RiAuUKF, the noises are
incorporated by realizing the augmented sigma points in
the process and measurement functions [equations (40) and
(41)]; and in the RiAdUKF, by “adding” (in the tangent
space) their means and covariances [equations (44), (45),
(47), (48)].
However, the UKFRM exclude the noises. Even though
the UKFRM of [5] considers a system with process and
measurement noises [cf. (53)], they do not influence any
estimate within the UKFRM; these noises’ statistics do
not appear at any step of the UKFRM—commonly, filters
consider these statistics when calculating the predicted
covariances, but this is also not the case for the UKFRM
[cf. (56) and (59)].
We can point out at least two consequences of this absence
of the noise elements:
a) the Euclidean case of the UKFRM is not equivalent to

any (Euclidean) UKF. This can be seen by considering
Euclidean manifolds in Algorithm 3 (cf. the last para-
graph of Sections III-A and of III-B). Besides, to the
best of our knowledge, there is no UKF without process
and measurement noises covariance (cf. [11], [38]).

b) the UKFRM might diverge in situations in which the
RiUKFs do not. This behavior can be seen in the
following simple example: consider (19) and (53) with
Nnx
x = Nn$

x = Nny
x = Nnϑ

x = R. Suppose that i) the
initial state is x0 ∼ (1, 1)R, ii) the noise covariances are
Qk = Rk = 1, iii) the system functions are fk(xk−1) =
f∗k (xk−1) = xk−1 and hk(xk) = h∗k(xk) = 1 − xk,
and iv) the measurements are y̆1 = · · · = y̆kf = 1.
For this example, we ran the (linear) KF (cf. [51]),
the RiAdUKF, and the UKFRM. Both the KF and the
RiAdUKF provided the same estimates, but the UKFRM
did not provide consistent results; the simulation was
halted because the corrected covariance (P̂

2|2
xx) lost its

positiveness. Similar results occurred in the simulations
of Section VIII.

2) We introduced a consistent definition [equation (19)] for
the system associated with the RiAdUKF. To the best of
our knowledge, (19) is the first consistent additive-noise
Riemannian stochastic discrete-time dynamic system.

3) To the best of our knowledge, the RiUKFs are the first
UKFs for Riemannian state-space systems considering
noises with non-zero means. Even for simple manifolds
such as the unit sphere, we could not find a UKF consid-
ering this case.

4) All the equations of our RiUKFs are formally justified.
These justifications are the following ones:
a) The equations of steps 1 and 2 of the RiUKFs are

justified by Definition 3, Theorem 1 and Corollary VI.
b) Equations (42) and (49) (the Kalman Gains) are justified

in Section VII-B2. This form of the Kalman gain Gk in
(42) and (49) follows as a particular case of the Kalman
gain of a more general system (Gk,∗∗) where the state
and the measurement belong to the product Nx ×Ny .

c) The equations of step 3 of the RiUKFs are justified in

Section VII-B. We showed that they follow from con-
sidering i) xTMk|k−1 and yTMk|k−1 normally-joint distributed
[equation (25)], and ii) xTMk|k given by a linear correction
of xTMk|k−1 by (y̆TMk − yTMk|k−1) [equation (26)].

5) (Euclidean) UKFs are particular cases of the RiUKFs (cf.
Section VII-C).

Altogether, we can say the RiUKFs have novelties compared
with the UKF for Riemannian state-space systems of the
literature.

VIII. EXAMPLE: SATELLITE ATTITUDE TRACKING

In this section, we apply the developed theory to estimate
the attitude of a satellite in a realistic scenario (cf. [52]).

The set of possible attitudes of a rotating body is not a
Euclidean space, but a three dimensional smooth manifold
known as SO(3). This manifold has many different topo-
logical properties from a Euclidean space: for instance, it
is compact whilst Euclidean spaces are not. Due to this
difference, Euclidean UKFs designed over Euclidean spaces
may not work properly: its estimates may not stay within the
state-space manifold, resulting in poor performance and poor
accuracy [12].

Although we could apply an RiUKFs for SO (3) in this
example, we prefer to apply an RiUKF for the set of unit
quaternions S3 because they represent, without singularities
[53], attitudes using the minimal set of parameters. Let qi =[
ηi εTi

]T ∈ R4, where ηi ∈ R and εi ∈ R3. It is possible to
prove that the three dimensional sphere

S3 = {(q1, q2, q3, q4) ∈ R4 : q2
1 + q2

2 + q2
3 + q2

4 = 1} (61)

is a Riemannian manifold and the product

q1 ⊗ q2 =

[
η1η2 − εT1 ε2

η1ε2 + η2ε1 + ε1 × ε2

]
.

is closed. For a rotation of an angle θ around an unit vector n,
there are two associated unit quaternions q and q′ such that

q = cos

(
θ

2

)
+ ımn sin

(
θ

2

)
, q′ = −q.

Let q(t) ∈ S3 be the attitude of the satellite at the time
instant t, and ω(t) ∈ R3 its the angular velocity. The evolution
of q(t) over time can be described by the following differential
equation [54]:

q̇ (t) =
1

2
ω(t)⊗ q (t) , (62)

where ω ∈ R4 is given by ω =
[
0 ωT

]T
.

We generate synthetic data by a fourth order Runge-Kutta
integration of (62) over the interval [0s, 20s] with angular
velocity

ω (t) =

 0.03 sin
(
[πt/600]

◦)
0.03 sin

(
[πt/600]

◦ − 300◦
)

0.03 sin
(
[πt/600]

◦ − 600◦
)


and initial state q (0) = 0.96 +
ım[0.13, 0.19,

√
1− 0.962 − 0.132 − 0.192]T .
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Table II
ROOT MEAN SQUARE ERROR (×10−6) OF EACH RIUKF IN TABLE I

CONSIDERING 1,000 SIMULATIONS OF A SATELLITE ATTITUDE TRACKING
EXAMPLE.

RiMiAuUKF RiRhoMiAuUKF RiMiSyAuUKF RiHoMiSyAuUKF
2,612 2,614 2,614 2,614

RiMiAdUKF RiRhoMiAdUKF RiMiSyAdUKF RiHoMiSyAdUKF
2,612 2,613 2,613 2,613

For filtering, we consider (19) with xk = q(kδt)

θ(t) := ‖ω(t)‖ δt
2

fk
(
xk−1

)
=
[
cos θ(t) ωT (t)

‖ω(t)‖ sin θ(t)
]T
⊗ xk−1

hk
(
xk
)

= xk,

$̄k = ϑ̄k = [0]3×1, Qk = (0.31236 × 10−6)2I3, and Rk =
(0.5π/180 × 10−6)2I3. These values for Qk and Rk were
chosen according to [12].

We performed 1, 000 simulations with the RiUKFs of Table
I and the UKFRM of [5]. To calculate Riemannian means, we
used the gradient descent method of [49] with a threshold
of 10−6; and for Riemannian exponentials, Riemannian loga-
rithms, and parallel transport, we used the MATLAB toolbox
ManOpt [50].

For all simulations, the RiUKFs of Table I provided good
estimates, with a Root Mean Square Error in the order of 10−6

(Table II). The RiMiAdUKF or the RiRhoMiAdUKF are the
best alternatives for this example because i) it demands less
computational effort than the other filters—it is additive and is
composed of the least number of sigma points (cf. Corollary
1)— and ii) all RiUKFs performed almost equally.

The UKFRM failed in all the 1, 000 simulations; in every
simulation, the state covariance estimate lost its positiveness.
Nonexistence of noise terms in the UKFRM might explain this
problematic behavior (cf. Section VII-D).

IX. CONCLUSIONS

In this work, we extend the systematization of the Unscented
Kalman Filtering theory we developed in [11] towards estimat-
ing the state of Riemannian systems. In this systematization,
we introduce the following results6 (all results are mathemat-
ically justified):

1) A Riemannian extension of the σ-representation (σR ):
the Riemannian σ-representation (RiσR, Section V).

2) A technique to obtain closed forms of the RiσR by closed
forms of the σR (Theorem 1). Using this result, we
discover (Corollary 1)

a) the minimum number of sigma points of an RiσR,
b) the minimum number of sigma points of a symmetric

RiσR,
c) closed forms for the minimum RiσR, and
d) closed forms for the minimum symmetric RiσR.

3) An additive-noise Riemannian system definition (Section
VII-A). We require this definition to introduce additive-
noise Riemannian UKFs.

6These results were first presented in Menegaz’s PhD thesis [38].

4) Kalman correction equations on Riemannian manifolds
(Section VII-B).

5) New discrete-time Riemannian UKFs (RiUKFs), namely
the Riemannian Additive UKF and the Riemannian Aug-
mented UKF (Section VII-C). Besides, we

a) provide a list of particular variants of these filters
(Table I); all these variants are new. Compared with
the literature’s UKF for Riemannian manifolds (in [5]),
our RiUKFs are more consistent, formally-principled,
and general.

b) numerically compare all these particular variants with
the literature’s UKF on Riemannian manifolds in a
satellite attitude tracking scenario. For all 1,000 simu-
lations, the new variants provided good estimates, but
the literature’s filter diverged; in every simulation, the
state covariance estimate lost its positiveness.

With this work, we hope to have expanded the literature’s
knowledge on Kalman filtering and provided a tool for the
research community to improve the performance and stability
of many UKFs.

Following this study, we recommend the research commu-
nity searching for computationally-implementable variants of
RiUKFs. Since concepts of the Riemannian manifold theory
can be very abstract, depending on the underlying manifold,
developing RiUKFs variants is not trivial.

This task is even harder without a generalizing base theory:
that is one of the reasons why, in this work, we develop a
general consistent systematized theory of Unscented Kalman
Filters for Riemannian State-Space Systems.
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[33] I. Marković, J. Ćesić, and I. Petrović, “On wrapping the Kalman filter
and estimating with the SO(2) group,” in 2016 19th Int. Conf. Inform.
Fusion, Heidelberg, BW, jul 2016, pp. 2245 – 2250.

[34] M. Barczyk and A. F. Lynch, “Invariant Extended Kalman Filter Design
for a Magnetometer-plus-GPS Aided Inertial Navigation System,” in
50th IEEE Conf. Decisi.Control and Europ. Control Conf., Orlando, FL,
dec 2011, pp. 5389–5394.

[35] S. Bonnabel, P. Martin, and E. Salaün, “Invariant Extended Kalman
Filter: theory and application to a velocity-aided attitude estimation
problem,” in Proc. 48th IEEE Conf. Decisi.Control and 28th Chin.
Control Conf., Shanghai, China, dec 2009, pp. 1297–1304.

[36] S. Bonnabel, “Left-invariant extended Kalman filter and attitude esti-
mation,” in 46th IEEE Conf. on Decis. Control, New Orleans, LA, dec
2007, pp. 1027–1032.

[37] S. Särkkä, Bayesian Filtering and Smoothing. Cambridge, UK:
Cambridge University Press, 2013.

[38] H. M. T. Menegaz, “Unscented Kalman Filtering on Euclidean and
Riemannian Manifolds,” Ph. D., Universidade de Brasília, 2016.
[Online]. Available: http://repositorio.unb.br/handle/10482/21617

[39] P. Vartiainen, T. Bragge, J. P. Arokoski, and P. a. Karjalainen, “Nonlinear
State-Space Modeling of Human Motion Using 2-D Marker Observa-
tions,” IEEE Trans. Biomed. Eng., vol. 61, no. 7, pp. 2167–2178, jul
2014.

[40] B. O. Teixeira, J. Chandrasekar, L. A. Tôrres, L. A. Aguirre, and
D. S. Bernstein, “State estimation for linear and non-linear equality-
constrained systems,” Int. J. Control, vol. 82, no. 5, pp. 918–936, may
2009.

[41] X. Pennec, “L’Incertitude dans les problemes de reconnaissance et de
recalage: application en imagerie medicale et biologie moleculaire,” PhD
Thesis, Ecole Polytechnique, Palaiseau, dec 1996.

[42] M. P. Do Carmo, Riemannian Geometry, ser. Mathematics: Theory &
Applications. Woodbine, NJ: Birkhäuser Boston, 1992.

[43] A. Figalli, T. O. Gallouët, and L. Rifford, “On the convexity of injec-
tivity domains on nonfocal manifolds,” SIAM Journal on Mathematical
Analysis, vol. 47, no. 2, pp. 969–1000, 2015.

[44] S. Särkkä, “On Unscented Kalman Filtering for State Estimation of
Continuous-Time Nonlinear Systems,” IEEE Trans. Autom. Control,
vol. 52, no. 9, pp. 1631–1641, 2007.

[45] L. Chang, F. Qin, and F. Zha, “Pseudo Open-Loop Unscented Quaternion
Estimator for Attitude Estimation,” IEEE Sensors J., vol. 16, no. 11, pp.
4460–4469, jun 2016.

[46] B. D. O. Anderson and J. B. Moore, Optimal Filtering, ser. Information
and System Science Series, T. Kailath, Ed. Englewood Cliffs, NJ:
Prentice-Hall, 1979, no. 2.

[47] M. Lorenzi and X. Pennec, “Efficient Parallel Transport of Deformations
in Time Series of Images: From Schild’s to Pole Ladder,” J. Math.
Imaging Vision, vol. 50, no. 1-2, pp. 5–17, sep 2014.

[48] M. Moakher, “Means and Averaging in the Group of Rotations,” SIAM
J. Matrix Anal. Appl., vol. 24, no. 1, pp. 1–16, 2002.

[49] X. Pennec, “Computing the Mean of Geometric Features Application to
the Mean Rotation,” INRIA, Tech. Rep., mar 1998. [Online]. Available:
https://hal.inria.fr/inria-00073318

[50] N. Boumal, B. Mishra, P. .-A. Absil, and R. Sepulchre, “Manopt, a
Matlab Toolbox for Optimization on Manifolds,” J. Mach. Learn. Res.,
vol. 15, pp. 1455–1459, 2014.

[51] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Academic
Press, 1970.

[52] J. L. Crassidis, F. L. Markley, and Y. Cheng, “Survey of Nonlinear
Attitude Estimation Methods,” J. Guid. Control Dynam., vol. 30, no. 1,
pp. 12–28, jan 2007.

[53] J. Stuelpnagel, “On the Parametrization of the Three-Dimensional Rota-
tion Group John Stuelpnagel,” SIAM Review, vol. 6, no. 4, pp. 422–430,
1964.

[54] P. H. Zipfel, Modeling and Simulation of Aerospace Vehicle Dynamics,
2nd ed., ser. AIAA Education Series. Reston ,VA: AIAA, jan 2007.

[55] R. S. Palais and C.-L. Terng, Critical point theory and submanifold
geometry. Springer, 2006, vol. 1353.

[56] F. Nielsen and R. Bhatia, Matrix information geometry. Springer, 2013.

APPENDIX

A. Results relative to Riemannian manifolds

In this appendix, we provide some results relative to the
theory of Riemannian manifolds. These definitions are mainly
based on [42].

Definition 5 (Differentiable manifold [42]). A differentiable
manifold of dimension n is a pair (N ,A) whereN is a set, and
A = {(Ua, ϕa)}, called atlas, a family of injective mappings
(charts) ϕa : Ua ⊂ Rn → N of open sets Ua of Rn into N
such that:

1)
⋃
a ϕa(Ua) = N .

2) for any pair a, b, with ϕa(Ua) ∩ ϕb(Ub) =: W 6= ∅, the
sets ϕ−1

a (W ) and ϕ−1
b (W ) are open sets in Rn, and the

mappings ϕ−1
b ◦ ϕa and ϕ−1

b ◦ ϕa are differentiable.
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3) The family A = {(Ua, ϕa)} is maximal relative to the
conditions 1) and 2).

A pair (Ua, ϕa) (or the mapping ϕa) with a ∈ ϕa(Ua) is
called a parameterization of N at a. For simplicity, we can
denote a differentiable manifold (N ,A) of dimension n by N
or Nn.

Definition 6 (Differentiable function [42]). Let Nn
1 and Nm

2

be differentiable manifolds. A mapping f : N1 → N2

is differentiable at a ∈ N1 if, given a parameterization
ϕ2 : V ⊂ Rm → N2 at f(a), there exists a parameterization
ϕ1 : U ⊂ Rn → N1 at a such that f(ϕ1(U)) ⊂ ϕ2(V ) and
the mapping

f̃ := ϕ−1
2 ◦ f ◦ ϕ1 : U ⊂ Rn → Rm (63)

is differentiable at ϕ−1
1 (a). We say f is differentiable on an

open set of N1 if it is differentiable at all of the points of this
open set.

In this work, we suppose that all functions are differentiable
unless otherwise stated.

Definition 7 (Tangent space [42]). Let N be a differentiable
manifold. A differentiable function α : I → N is called a
(differentiable) curve in N . Suppose α(0) = a ∈ N , and
let Da(N ) be the set of all functions f : N → R that are
differentiable at a. The tangent vector to the curve α at t = 0
is a function α′(0) : Da(N )→ R given by

α′(0)f = d(f ◦ α)/dt|t=0 , f ∈ Da(N ).

Note that α′(0) is an operator taking f ∈ Da(N ) to a scalar
d(f ◦ α)/dt|t=0. A tangent vector at a is a tangent vector of
some curve α : I → N with α(0) = a at t = 0. The set of
all tangent vectors to N at a will be indicated by TaN .

The set TaN forms a vector space of dimension n and is
called the tangent space of N at a.

Definition 8 (Arc length [7]). Given an open interval I ⊂ R,
a differentiable function (Definition 6) α : I → N is called
a (differentiable) curve in N . Given a curve α on N , the arc
length of α in the interval [a, b] ⊂ I is defined by

Lba(α) :=

∫ b

a

‖α′(t)‖α(t) dt.

Definition 9 (Differential of a function). Let N1 and N2 be
differentiable manifolds and f : N1 → N2 a differentiable
mapping. For every a ∈ N1 and for each v ∈ TaN1, choose
a differentiable curve α : I→ N1 with α(0) = a, α′(0) = v.
Take β = f ◦α. Then it can be shown that the operator dfa(v)
defined by

dfa(v) := β′(0)

is a tangent vector of Tf(a)N2. Moreover the mapping the

dfa : TaN1 → Tf(a)N2 : v 7→ β′(0)

is linear and does not depend on the choice of α [42]. This
linear mapping dfa is called the differential of f at a.

Definition 10 (Vector field [6], [42]). A vector field X on a
differentiable manifold N is a correspondence that associates

to each point a ∈ N a vector X (a) ∈ TaN . Given a vector
field X on N and a differentiable real-valued function f :
N → R, we let Xf denote the real-valued function on N
defined by

(Xf) : N → R
a 7→ vf, v ∈ TaN .

The set of all vector fields of N is denote by X (N ).
The multiplication of a vector field X by a function f :
N → R is defined by fX : N → TaN : a 7→ f(a)v, v ∈
TaN ; and the addition of two vector fields X and Y by X+Y :
N → TaN : a 7→ X (a) + Y(a). The Lie bracket of vector
fields is defined as the unique vector field [X ,Y] satisfying
([X ,Y]f) := (X (Yf))− (Y(Xf)) for all real valued smooth
functions f defined on N . A vector field X along a curve
α : I→ N is a differentiable mapping that associates to every
t ∈ I a tangent vector X (t) ∈ Tα(t)N .

Definition 11 (Riemannian manifold). A Riemannian metric
〈, 〉 or g on a differentiable manifold N is a correspondence
which associates to each point a of N an inner product ga :=
〈, 〉a on a tangent space TaN , with 〈, 〉a varying differentially
in the following sense: if ϕ : U ⊂ Rn → N is a system of
coordinates (or chart) around a, with ϕ(u1, u2, ..., un) = a ∈
ϕ(U) and ∂/∂ui(a) = dϕa(0, ..., 0, 1, 0, ...0), then

gi,j (u1, u2, ..., un) =

〈
∂

∂ui
(a),

∂

∂uj
(a)

〉
a

is a differentiable function on U [42]. We delete the index a
in the functions ga and 〈, 〉a whenever there is no possibility
of confusion.

The pair (N , g) is called a Riemannian manifold [6].
For simplicity, we can also denote the Riemannian manifold
(N , g) by the set N .

Definition 12 (Riemannian gradient [42]). Let N be a Rie-
mannian manifold. Given a smooth function f : N → R,
the Riemannian gradient of f at x, denoted by gradf(x) is
defined as the unique element of TxN that satisfies

〈gradf(x), v〉x = dfx(v), ∀v ∈ TxN .

Definition 13 (Critical point [55]). Let N and R be smooth
manifolds. If f : N → R is a smooth map, then a point
x ∈ N is a critical point of f if dfx : TxN → Tf(x)R is
not surjective. In the particular case that R = R, then the
critical points of f are exactly the points x which dfx = 0.
Moreover, if N is a Riemannian manifold, the critical points
are the points x ∈ N such that gradf(x) = 0.

Definition 14 (Affine connection [42]). An affine connection
∇ on a differentiable manifold N is a mapping ∇ : X (N )×
X (N ) → X (N ) which is denoted by (X ,Y) 7→ ∇XY and
which satisfies the following properties, for X , Y , Z ∈X (N )
and f , g ∈ DN :

1) ∇fX+gYZ = f∇XZ + g∇XZ ,
2) ∇X (Y + Z) = ∇XY +∇XZ ,
3) ∇X (fY) = f∇XY + (Xf)Y .

If ∇ satisfies the following additional properties:
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1) X 〈Y,Z〉 = 〈∇XY,Z〉 + 〈Y,∇XZ〉, for all X ,Y , Z ∈
X (N ),

2) ∇XY −∇YX = [X ,Y], for all X ,Y ∈X (N ),
then ∇ is known as the Riemannian connection of N . The
Levi-Cevita theorem [42] says that any Riemannian manifold
has a Riemannian connection and it is unique.

Theorem 4 (Covariant derivative [42]). Let N be a differen-
tiable manifold with an affine connection ∇. There exists a
unique correspondence which associates to a vector field X
along the differentiable curve α : I→ N another vector field
DX/dt along α, called the covariant derivative of N along
α, such that:

1) D
dt (X + Y) = DX

dt + DY
dt ;

2) D
dt (XV ) = df

dtX + f DXdt , where f is a differentiable
function on I;

3) if X is induced by a vector field Z ∈X (N ), i.e., X (t) =
Z(α(t)), then DX/dt = ∇α′(t)Z .

Definition 15 (Parallel Transport [42]). Let N be a differen-
tiable manifold with an affine connection ∇. A vector field X
along a curve α : I→ N is called parallel when

DX
dt

(t) = 0, for all t ∈ I.

Moreover, let α be differentiable and v0 a vector tangent to
N at α(t0), t0 ∈ I. Then there exists a unique parallel vector
field X along α, such that X (t0) = v0; V (t) is called the
parallel transport of X (t0) along α.

Definition 16 (Geodesic [42]). A parameterized curve α : I→
N is a geodesic at t0 ∈ I if

D

dt
(α′(t)) = 0

at the point t0; if α is a geodesic at t, for all t ∈ I, we
say that α is a geodesic [42]. If the definition domain of all
geodesics of N can be extended to R, then N is said to be
geodesically-complete.

Definition 17 (Exponential and logarithm mappings [7]).
Consider a point a ∈ N and let V ⊂ TaN be an open set
of TaN . For a given vector v ∈ V and 1 ∈ I, consider the
geodesic α : I → N passing through a with initial velocity
α′(0) = v. Then the mapping expa : V → N defined by
v 7→ α(1) is well-defined [42] and is called the (Riemannian)
exponential mapping on V .

The mapping expa is differentiable, and there is a neigh-
borhood U of a such that the exponential map at a is a
diffeomorphism from the tangent space to the manifold. For
U being this neighborhood and a, b ∈ U , b = expa(v), then
the inverse mapping loga : U → TaN defined by b 7→ v is
called the (Riemannian) logarithm mapping. For brevity, we
can also write

−→
ab in the place of loga(b).

Definition 18 (Riemannian curvature tensor and sectional
curvatures [42]). Let X(N ) be the set of mappings from
X (N ) to X (N ). The Riemannian curvature tensor R of a
differentiable manifold N is the correspondence R : X (N )×
X (N ) → X(N ) that associates to each pair of vector fields

X ,Y ∈ X (N ) the application R(X ,Y) : X (N ) → X (N )
given by

R(X ,Y)Z := ∇Y∇XZ −∇X∇YZ +∇[X ,Y]Z,

where ∇ is the Riemannian connection of N . A notion closely
related to the Riemannian curvature tensor is the sectional
curvatures of N . Given two linearly independent tangent
vectors u and v at the same point, the expression

K(u, v) :=
〈R(u, v)u, v〉

〈u, u〉 〈v, v〉 − 〈u, v〉2

does not depend on the choice of u, v, but only on the the
subspace σ spanned by them [42]. Given a point p ∈ N and a
bidimensional subspace σ of TpN , the real number K(u, v) =
K(σ) where {u, v} is any basis of σ, is the sectional curvature
of σ in p.

B. Proof of Theorem 1
Suppose χ is a RilthNσR of X . Then, from (11), (6) is

satisfied. Because χ is a RilthNσR of X , from (12), X̄ is
a Riemannian sample mean of χ and, therefore, from (4), X̄
minimizes the function

g(x) :=

N∑
i=1

wmi dist2 (x, expX̄ χi) .

The function g ◦ expX̄ : Ω(X̄) ⊂ TX̄N → [0,∞) is a real
valued function defined in a subset of the vector space TX̄N .
Since Ω(X̄) is convex by hypothesis and its second derivative
is positive, then g◦expX̄ is a strictly convex function. Because
it is also a differentiable function, g ◦ expa has an unique
minimum x∗ ∈ Ω(a) and it is a critical point of g ◦ expa.
Thus

[0]n×1 =
d
(
g ◦ expX̄

)
(x)

dx

∣∣∣∣∣
x=x∗

⇔ x∗ =

N∑
i=1

wmi χi. (64)

By Theorem 7.9 of [56] , X̄ is the unique minimum and
critical point of g. Thus loga X̄ is a critical point of g ◦ expa.
and

[0]n×1 =
−−→
X̄X̄ = x∗ =

N∑
i=1

wmi χi =: µχ. (65)

Hence, (7) is satisfied.
Now let us prove the converse for the mean. Suppose all

points χi belong to the domain of expX̄ , and that χ is an
lthNσR of X :=

−−→
X̄X . Define the set

χ := {expX̄ χi, w
m
i , w

c,j
i , wcc,ji |χi ∈ N ;

wcc,ji , wcc,ji , wcc,ji > 0}Ni=1 (66)

Then, from (6) and (66), (11) is satisfied. From (64) and (65),
we have that expX̄(µχ) = expX̄(

−−→
X̄X̄) = X̄ minimizes g

and (12) is satisfied.
For even j, we have, from (7) and (5),

Mj
χ =

N∑
i=1

wcc,ji

[
(χi − µχ) (�)T

]⊗ j2 =:Mj
χ;

and from (8), it follows Mj
χ = Mj

χ = M j
X ; for odd j, the

reasoning is similar. The remaining is straightforward.
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C. Proof of Corollary 1

From Theorem 1, χ is a normalized lthNσR of X ∼
(logX̄(X),PXX)n. From Corollary 1 of [11], it follows that
i) N ≥ r + 1; and ii), if χ is symmetric, then N = 2r. The
remaining of the proof is a direct consequence of Theorem 1.

D. Proof of Proposition 1

A Riemannian mean X̄ of X is such that it solves (2).
Consider the following optimization problem

minimize g̃(c̃) := g ◦ expā

(−→̄
ac
)

= σ2−→̄
aa+p

(c̃)

subject to c ∈ N ; (67)

From a reasoning similar to the proof of Theorem 1 (Appendix
B), if c̃ solves (67), then log−1

ā c̃ = expā c̃ solves (2), and X̄ =
expā c̃. Since σ2−→̄

aa+p
(c̃) is the variance of −→̄aa + p it follows

that E−→̄aa+p{
−→̄
aa+ p} = p̄ minimizes g̃ (c); thus X̄ := expā p̄.

For the covariance part, we have

PXX :=

∫
N−C(X̄)

−−→
X̄x

(−−→
X̄x

)T
pX(x)dN (x) = P aa + Ppp.

E. Proof of Theorem 3

First, by considering cx = bx = x̄k|k−1 and cy = by =

ȳk|k−1 in the definitions of P k|k−1
xx,∗∗ , P k|k−1

yy,∗∗ , and P k|k−1
xy,∗∗ , (34)

yields

Gk,∗∗ =

[
[0]nx×nx Gk

[0]ny×nx [0]ny×ny

]
, (68)

and substituting cx = bx = x̂k|k−1, cy =

by = ŷk|k−1, and (68) into (35) gives x̄
TcNx,y
k|k,∗∗ =[

Gk logȳk|k−1
(y̆k), [0]ny×1

]T
; consequently, from (33),

xTMk|k := [x
TcNx,y
k|k,∗∗ ]1:nx,1 = Gk logyk|k−1

(yk). Second, con-
sidering (68) into (36) yields

P k|k,TcM
xx,∗∗ = diag

(
P k|k−1
xx −Gk

(
P k|k−1
yy

)−1
GT
k , [0]ny×ny

)
;

and, from (33), it follows that P
k|k,x̂k|k−1
xx,∗∗ = P k|k−1

xx −
Gk(P k|k−1

yy )−1GT
k .

F. Notation and Acronyms

Throughout this paper, we use the following notations:
• for a matrix A, (A) (�)T stands for (A) (A)

T , and
√
A

for a square-root matrix of A such that A =
√
A
√
A
T

.
• ⊗ stands for the Kronecker product operator, and A⊗n :=
A⊗ · · · ⊗A.

• [A]p×q stands for a block matrix consisting of the matrix
A being repeated p times in the rows and q times in the
columns.

• [A]i1:i2,j1:j2 stands for a sub-matrix of the matrix A
formed by the rows i1 to i2 and the columns j1 to j2
of A.

• I stands for an open interval in R.
Below, we provide a list of acronyms and parts of

acronyms—these parts end with an ’-’ and are followed
by examples—along with their meaning. There are other

acronyms in the text that can be composed by i) concatenating
some items below (e.g., MiσR [Mi- with σR] standing for
Minimum σRepresentation) , and ii) adding Ri- (standing
for Riemannian; e.g., RiMiσR [Ri- with MiσR] standing for
RiMiσR):
• AdUKF: Additive Unscented Kalman Filter.
• AuUKF: Augmented Unscented Kalman Filter.
• EKF: Extended Kalman Filter.
• HoMiSy-: Homogeneous Minimum Symmetric-

(e.g., HoMiSyσR, RiHoMiSyσR, RiHoMiSyAdUKF,
RiHoMiSyAuUKF).

• KF: Kalman Filter.
• lthNσR: lth order N points σ-representation.
• lUT: lth order UT.
• Mi-: Minimum- (e.g., RiMiσR, RiMiAdUKF, RiMi-

AuUKF).
• MiSy-: Minimum Symmetric- (e.g., RiMiSyσR, RiM-

iSyAdUKF, RiMiSyAuUKF).
• RhoMi-: Rho Minimum- (e.g., RiRhoMiσR, RiRho-

MiAdUKF, RiRhoMiAuUKF).
• σR: σ-Representation.
• UKF: Unscented Kalman Filter.
• UT: Unscented Transformation.
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